Episodes in insect evolution.

This article derives from a society-wide symposium organized by Timothy Bradley and Adriana Briscoe and presented at the 2009 annual meeting of the Society for Integrative and Comparative Biology in Boston, Massachusetts. David Grimaldi provided the opening presentation in which he outlined the major evolutionary events in the formation and subsequent diversification of the insect clade. This presentation was followed by speakers who detailed the evolutionary history of specific physiological and/or behavioral traits that have caused insects to be both ecologically successful and fascinating as subjects for biological study. These include a review of the evolutionary history of the insects, the origins of flight, osmoregulation, the evolution of tracheal systems, the evolution of color vision, circadian clocks, and the evolution of eusociality. These topics, as covered by the speakers, provide an overview of the pattern and timing of evolutionary diversification and specialization in the group of animals we know as insects.

[1]  M. Schwarz,et al.  Phylogenetics of allodapine bees: a review of social evolution, parasitism and biogeography , 2011, Apidologie.

[2]  D. Roubik,et al.  Phylogenetic analysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes (Hymenoptera: Apoidea: Apidae) , 2011, Apidologie.

[3]  G. Edgecombe,et al.  The position of crustaceans within Arthropoda - Evidence from nine molecular loci and morphology , 2010 .

[4]  J. Rust,et al.  Devonohexapodus bocksbergensis is a synonym of Wingertshellicus backesi (Euarthropoda) – no evidence for marine hexapods living in the Devonian Hunsrück Sea , 2009 .

[5]  Michael Kaspari,et al.  Gliding hexapods and the origins of insect aerial behaviour , 2009, Biology Letters.

[6]  R. Cardé,et al.  Encyclopedia of Insects , 2009 .

[7]  A. Briscoe,et al.  A butterfly eye's view of birds , 2008, BioEssays : news and reviews in molecular, cellular and developmental biology.

[8]  Jeremy M. Brown,et al.  Newly discovered sister lineage sheds light on early ant evolution , 2008, Proceedings of the National Academy of Sciences.

[9]  J. Lancaster,et al.  Aquatic Insects: Challenges to Populations , 2008 .

[10]  O. Béthoux,et al.  How Gerarus lost its head: stem‐group Orthoptera and Paraneoptera revisited , 2008 .

[11]  A. Briscoe,et al.  Reconstructing the ancestral butterfly eye: focus on the opsins , 2008, Journal of Experimental Biology.

[12]  T. Schultz,et al.  Major evolutionary transitions in ant agriculture , 2008, Proceedings of the National Academy of Sciences.

[13]  E. Mazzoni,et al.  Iroquois Complex Genes Induce Co-Expression of rhodopsins in Drosophila , 2008, PLoS biology.

[14]  Patrick Emery,et al.  Cryptochromes Define a Novel Circadian Clock Mechanism in Monarch Butterflies That May Underlie Sun Compass Navigation , 2008, PLoS biology.

[15]  J. Lancaster,et al.  Saline-water insects: ecology, physiology and evolution. , 2008 .

[16]  J. VandenBrooks,et al.  Mysteries of oxygen and insect size , 2008 .

[17]  Elizabeth C. McDonald,et al.  Genomic and gene regulatory signatures of cryptozoic adaptation: Loss of blue sensitive photoreceptors through expansion of long wavelength-opsin expression in the red flour beetle Tribolium castaneum , 2007, Frontiers in Zoology.

[18]  Robert Dudley,et al.  Gliding and the Functional Origins of Flight: Biomechanical Novelty or Necessity? , 2007 .

[19]  E. Louis,et al.  Circadian Rhythm Gene Regulation in the Housefly Musca domestica , 2007, Genetics.

[20]  G. D. Bernard,et al.  Gene duplication is an evolutionary mechanism for expanding spectral diversity in the long-wavelength photopigments of butterflies. , 2007, Molecular biology and evolution.

[21]  Wah-Keat Lee,et al.  Increase in tracheal investment with beetle size supports hypothesis of oxygen limitation on insect gigantism , 2007, Proceedings of the National Academy of Sciences.

[22]  A. Briscoe,et al.  Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. , 2007, Molecular biology and evolution.

[23]  L. Packer,et al.  Phylogenetic analysis of the corbiculate Apinae based on morphology of the sting apparatus (Hymenoptera: Apidae) , 2007, Cladistics : the international journal of the Willi Hennig Society.

[24]  J. H. Hunt The Evolution of Social Wasps , 2007 .

[25]  Joseph J Gillespie,et al.  Multigene phylogeny reveals eusociality evolved twice in vespid wasps , 2007, Proceedings of the National Academy of Sciences.

[26]  M. Schwarz,et al.  Changing paradigms in insect social evolution: insights from halictine and allodapine bees. , 2007, Annual review of entomology.

[27]  Brian L. Fisher,et al.  Evaluating alternative hypotheses for the early evolution and diversification of ants , 2006, Proceedings of the National Academy of Sciences.

[28]  G. Weinstock,et al.  Phylogenomic analysis reveals bees and wasps (Hymenoptera) at the base of the radiation of Holometabolous insects. , 2006, Genome research.

[29]  Y. Shemesh,et al.  Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. , 2006, Genome research.

[30]  Seán G. Brady,et al.  The history of early bee diversification based on five genes plus morphology , 2006, Proceedings of the National Academy of Sciences.

[31]  J. Mallatt,et al.  Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. , 2006, Molecular phylogenetics and evolution.

[32]  G. D. Bernard,et al.  Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes , 2006, Journal of Experimental Biology.

[33]  Paul M. Choate,et al.  Evolution of the Insects , 2006 .

[34]  Seán G. Brady,et al.  Recent and simultaneous origins of eusociality in halictid bees , 2006, Proceedings of the Royal Society B: Biological Sciences.

[35]  R Dudley,et al.  The role of visual cues in directed aerial descent of Cephalotes atratus workers (Hymenoptera: Formicidae) , 2006, Journal of Experimental Biology.

[36]  C. Moreau,et al.  Phylogeny of the Ants: Diversification in the Age of Angiosperms , 2006, Science.

[37]  M. Gassmann,et al.  Sensing and responding to hypoxia via HIF in model invertebrates. , 2006, Journal of insect physiology.

[38]  S. Fuller,et al.  Molecular phylogenetics of the exoneurine allodapine bees reveal an ancient and puzzling dispersal from Africa to Australia. , 2006, Systematic biology.

[39]  Steven M. Reppert,et al.  The two CRYs of the butterfly , 2005, Current Biology.

[40]  P. Hardin,et al.  The Circadian Timekeeping System of Drosophila , 2005, Current Biology.

[41]  R. Willmann Reinterpretation of an alleged marine hexapod stem-group representative , 2005 .

[42]  Martin Giurfa,et al.  Spectral heterogeneity of honeybee ommatidia , 2005, Naturwissenschaften.

[43]  Niklas Wahlberg,et al.  Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers , 2005, Proceedings of the Royal Society B: Biological Sciences.

[44]  Doekele G Stavenga,et al.  Sexual Dimorphism of Short-Wavelength Photoreceptors in the Small White Butterfly, Pieris rapae crucivora , 2005, The Journal of Neuroscience.

[45]  A. Briscoe,et al.  Molecular characterization and expression of the UV opsin in bumblebees: three ommatidial subtypes in the retina and a new photoreceptor organ in the lamina , 2005, Journal of Experimental Biology.

[46]  Steven M. Reppert,et al.  Connecting the Navigational Clock to Sun Compass Input in Monarch Butterfly Brain , 2005, Neuron.

[47]  P. Lio’,et al.  Relationships between hexapods and crustaceans based on four mitochondrial genes , 2005 .

[48]  R. Jenner,et al.  Crustacea and Arthropod Relationships , 2005 .

[49]  J. Shultz,et al.  Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic , 2005, Proceedings of the Royal Society B: Biological Sciences.

[50]  M. O'Donnell,et al.  Analysis of Na+, Cl-, K+, H+ and NH4+ concentration gradients adjacent to the surface of anal papillae of the mosquito Aedes aegypti: application of self-referencing ion-selective microelectrodes , 2005, Journal of Experimental Biology.

[51]  R. Dudley,et al.  Directed aerial descent in canopy ants , 2005, Nature.

[52]  J. Simpson,et al.  Eusociality in the beetleAustroplatypus incompertus (Coleoptera: Curculionidae) , 1992, Naturwissenschaften.

[53]  Pud W. Sherman The eusociality continuum , 2005 .

[54]  B. David,et al.  Phylogeny and biogeography , 2005 .

[55]  J. Genise,et al.  Chubutolithes gaimanensis and Other Wasp Trace Fossils: Breaking through the Taphonomic Barrier , 2004 .

[56]  D. Grimaldi,et al.  New light shed on the oldest insect , 2004, Nature.

[57]  D. Dilcher,et al.  CHAPTER 6 – A History of Tree Canopies , 2004 .

[58]  M. Metzstein,et al.  Branching morphogenesis of the Drosophila tracheal system. , 2003, Annual review of cell and developmental biology.

[59]  A. Cronin,et al.  Social polymorphism in the sweat bee Lasioglossum (Evylaeus) baleicum (Cockerell) (Hymenoptera, Halictidae) in Hokkaido, northern Japan , 2003, Insectes Sociaux.

[60]  A. Gotter,et al.  Constructing a Feedback Loop with Circadian Clock Molecules from the Silkmoth, Antheraea pernyi* , 2003, Journal of Biological Chemistry.

[61]  Richard H. White,et al.  The retina of Manduca sexta: rhodopsin expression, the mosaic of green-, blue- and UV-sensitive photoreceptors, and regional specialization , 2003, Journal of Experimental Biology.

[62]  P. S. Ward,et al.  Phylogeny and biogeography of the ant subfamily Myrmeciinae (Hymenoptera: Formicidae) , 2003 .

[63]  G. D. Bernard,et al.  Not all butterfly eyes are created equal: Rhodopsin absorption spectra, molecular identification, and localization of ultraviolet‐, blue‐, and green‐sensitive rhodopsin‐encoding mRNAs in the retina of Vanessa cardui , 2003, The Journal of comparative neurology.

[64]  J. Boore,et al.  Hexapod Origins: Monophyletic or Paraphyletic? , 2003, Science.

[65]  M. Schwarz,et al.  Molecular phylogenetics of allodapine bees, with implications for the evolution of sociality and progressive rearing. , 2003, Systematic biology.

[66]  B. Danforth,et al.  Phylogeny of eusocial Lasioglossum reveals multiple losses of eusociality within a primitively eusocial clade of bees (Hymenoptera: Halictidae). , 2003, Systematic biology.

[67]  F. Haas,et al.  Devonohexapodus bocksbergensis, a new marine hexapod from the Lower Devonian Hunsrück Slates, and the origin of Atelocerata and Hexapoda , 2003 .

[68]  S. Reppert,et al.  Coordination of circadian timing in mammals , 2002, Nature.

[69]  C. D’Haese Were the first springtails semi-aquatic? A phylogenetic approach by means of 28S rDNA and optimization alignment. , 2002, Proceedings. Biological sciences.

[70]  B. Danforth,et al.  PHYLOGEOGRAPHY OF THE SOCIALLY POLYMORPHIC SWEAT BEE HALICTUS RUBICUNDUS (HYMENOPTERA: HALICTIDAE) , 2002, Evolution; international journal of organic evolution.

[71]  S. Soucy Nesting Biology and Socially Polymorphic Behavior of the Sweat Bee Halictus rubicundus (Hymenoptera: Halictidae) , 2002 .

[72]  B. Danforth Evolution of sociality in a primitively eusocial lineage of bees , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[73]  M. Richards Nesting biology and social organization of Halictus sexcinctus (Fabricius) in southern Greece , 2001 .

[74]  J. Nation Insect Physiology and Biochemistry , 2001 .

[75]  Gonzalo Giribet,et al.  Arthropod phylogeny based on eight molecular loci and morphology , 2001, Nature.

[76]  D. Tautz,et al.  Mitochondrial protein phylogeny joins myriapods with chelicerates , 2001, Nature.

[77]  Y. Komai Direct measurement of oxygen partial pressure in a flying bumblebee. , 2001, The Journal of experimental biology.

[78]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[79]  D. Briggs,et al.  New arthropods from the Lower Devonian Hunsru¨ck Slate (Lower Emsian, Rhenish Massif, western Germany) , 2001 .

[80]  P. Mardulyn,et al.  Multiple molecular data sets suggest independent origins of highly eusocial behavior in bees (Hymenoptera:Apinae). , 2001, Systematic biology.

[81]  M. Engel Monophyly and extensive extinction of advanced eusocial bees: insights from an unexpected Eocene diversity. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[82]  T. Schultz,et al.  Evidence for the origin of eusociality in the corbiculate bees (Hymenoptera: Apidae) , 2001 .

[83]  R. Josephson,et al.  Asynchronous muscle: a primer. , 2000, The Journal of experimental biology.

[84]  H. Paulus Phylogeny of the Myriapoda – Crustacea – Insecta: a new attempt using photoreceptor structure* , 2000 .

[85]  M. Engel A New Interpretation of the Oldest Fossil Bee (Hymenoptera: Apidae) , 2000 .

[86]  R. Dudley,et al.  The evolutionary physiology of animal flight: paleobiological and present perspectives. , 2000, Annual review of physiology.

[87]  C. Michener The Bees of the World , 2000 .

[88]  H. Wiering The bees of the world , 2000 .

[89]  R. Dudley The Biomechanics of Insect Flight: Form, Function, Evolution , 1999 .

[90]  Gibbs,et al.  Effects of lipid phase transitions on cuticular permeability: model membrane and in situ studies , 1999, The Journal of experimental biology.

[91]  S. Sakagami,et al.  Geographical variation of sociality and size-linked color patterns in Lasioglossum (Evylaeus) apristum (Vachal) in Japan (Hymenoptera, Halictidae) , 1999, Insectes Sociaux.

[92]  Jeffrey C. Hall,et al.  CRY, a Drosophila Clock and Light-Regulated Cryptochrome, Is a Major Contributor to Circadian Rhythm Resetting and Photosensitivity , 1998, Cell.

[93]  Maddrell Why are there no insects in the open sea? , 1998, The Journal of experimental biology.

[94]  K. Arikawa,et al.  Two visual pigments in a single photoreceptor cell: identification and histological localization of three mRNAs encoding visual pigment opsins in the retina of the butterfly Papilio xuthus. , 1998, The Journal of experimental biology.

[95]  D. Nilsson,et al.  Homology and parallelism in arthropod sensory processing , 1998 .

[96]  J. Bacon,et al.  The organization and development of the arthropod ventral nerve cord: insights into arthropod relationships , 1998 .

[97]  O. Kraus Phylogenetic relationships between higher taxa of tracheate arthropods , 1998 .

[98]  P. Haemig Effects of birds on the intensity of ant rain: a terrestrial form of invertebrate drift , 1997, Animal Behaviour.

[99]  M. Samways,et al.  Skimming and insect evolution. , 1996, Trends in ecology & evolution.

[100]  P. Whitington Evolution of neural development in the arthropods , 1996 .

[101]  W. Wcislo,et al.  Solitary behavior in a high-altitude population of the social sweat bee Halictus rubicundus (Hymenoptera: Halictidae) , 1996, Behavioral Ecology and Sociobiology.

[102]  Eörs Szathmáry,et al.  The Major Transitions in Evolution , 1997 .

[103]  C. Gans,et al.  Implications of the late Palaeozoic oxygen pulse for physiology and evolution , 1995, Nature.

[104]  Laurent Keller,et al.  Forum The eusociality continuum , 1995 .

[105]  Bernard J. Crespi,et al.  The definition of eusociality , 1995 .

[106]  R. Gadagkar Why the Definition of Eusociality Is Not Helpful to Understand Its Evolution and What Should We Do about It , 1994 .

[107]  G. Chavarría,et al.  “TOTAL EVIDENCE” AND THE EVOLUTION OF HIGHLY SOCIAL BEES , 1994 .

[108]  J. Bitsch The Morphological Groundplan of Hexapoda: Critical Review of Recent Concepts , 1994, Annales de la Société entomologique de France (N.S.).

[109]  S. Cameron Multiple origins of advanced eusociality in bees inferred from mitochondrial DNA sequences. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[110]  G. Pritchard,et al.  Did the first insects live in water or in air , 1993 .

[111]  Bernard J. Crespi,et al.  Eusociality in Australian gall thrips , 1992, Nature.

[112]  W. Foster,et al.  Altruistic housekeeping in a social aphid , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[113]  F. Harrison Microscopic anatomy of invertebrates , 1991 .

[114]  R. Matthews,et al.  The social biology of wasps. , 1991 .

[115]  Edward O. Wilson,et al.  Success and Dominance in Ecosystems: The Case of the Social Insects , 1991 .

[116]  J. Kukalová-Peck,et al.  The ecology of Paleozoic terrestrial arthropods: the fossil evidence , 1990 .

[117]  J. Wenzel A social wasp's nest from the Cretaceous period, Utah, USA, and its biogeographical significance. , 1990 .

[118]  R. Matthews,et al.  Population Genetic Structure and Social Evolution in the Sphecid Wasp Microstigmus comes , 1989, The American Naturalist.

[119]  Y. Itô,et al.  The evolutionary biology of sterile soldiers in aphids. , 1989, Trends in ecology & evolution.

[120]  C. Michener,et al.  The oldest fossil bee: Apoid history, evolutionary stasis, and antiquity of social behavior. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[121]  J. Dow Insect Midgut Function , 1987 .

[122]  M. May,et al.  FLIGHT ENERGETICS OF EUGLOSSINE BEES IN RELATION TO MORPHOLOGY AND WING STROKE FREQUENCY , 1985 .

[123]  T. Bradley 10 – The Excretory System: Structure and Physiology , 1985 .

[124]  G. A. Kerkut,et al.  Comprehensive insect physiology, biochemistry, and pharmacology , 1985 .

[125]  R. Page The Superorganism , 1984, The Art of the Bee.

[126]  J. Kukalová-Peck Origin of the insect wing and wing articulation from the arthropodan leg , 1983 .

[127]  J. Carpenter The phylogenetic relationships and natural classificition of the Vespoidea (Hymenptera) , 1982 .

[128]  A. Rasnitsyn A modified paranotal theory of insect wing origin , 1981, Journal of morphology.

[129]  E. Jarzembowski,et al.  A new assessment of Rhyniella, the earliest known insect, from the Devonian of Rhynie, Scotland , 1981, Nature.

[130]  S. Maddrell Characteristics of Epithelial Transport in Insect Malpighian Tubules , 1980 .

[131]  J. Hedgpeth,et al.  Arthropod Phylogeny with Special Reference to Insects , 1979 .

[132]  J. Kukalová-Peck Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record , 1978, Journal of morphology.

[133]  M. O'Donnell Site of water vapor absorption in the desert cockroach, Arenivaga investigata. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[134]  H. Komnick,et al.  Cutane Chloridaufnahme aus hypo-osmotischer Konzentration durch die Chloridzellen von Corixa punctata☆ , 1977 .

[135]  V. Wigglesworth Evolution of Insect Wings and Flight , 1973, Nature.

[136]  C. Brooke Worth,et al.  The Insect Societies , 1973 .

[137]  S. Sakagami,et al.  Distribution and Bionomics of a Transpalaearctic Eusocial Halictine Bee, Lasioglossum (Evylaeus) calceatum, in Northern Japan, with Reference to Its Solitary Life Cycle at High Altitude (With 9 Text-figures and 2 Tables) , 1972 .

[138]  E. Wilson The Insect Societies , 1974 .

[139]  A. B. Gurney The Insects of Australia , 1971 .

[140]  R. Crowson Insect Phylogeny , 1970, Nature.

[141]  Charles D. Michener,et al.  Comparative Social Behavior of Bees , 1969 .

[142]  R. Matthews Microstigmus comes: Sociality in a Sphecid Wasp , 1968, Science.

[143]  N. B. Eales,et al.  Invertebrates , 2003 .

[144]  C. Michener,et al.  Comparative external morphology, phylogeny, and a classification of the bees (Hymenoptera). Bulletin of the AMNH ; v. 82, article 6 , 1944 .

[145]  R. Snodgrass Evolution of the annelida onychophora and arthropoda , 1938 .

[146]  S. Hirst,et al.  On some Arthropod Remains from the Rhynie Chert (Old Red Sandstone) , 1926, Geological Magazine.

[147]  R. Matthews,et al.  Ants. , 1898, Science.

[148]  JOSEPH JOHN Murphy Origin of Insects , 1872, Nature.