Self-Organizing Digital Systems

[1]  Chris Dwyer,et al.  NANA: A nano-scale active network architecture , 2006, JETC.

[2]  Mark T. Jones,et al.  Towards a design framework for wearable electronic textiles , 2003, Seventh IEEE International Symposium on Wearable Computers, 2003. Proceedings..

[3]  Kia Bazargan,et al.  Exploring Potential Benefits of 3D FPGA Integration , 2004, FPL.

[4]  L. Durbeck,et al.  The Cell Matrix: an architecture for nanocomputing , 2001 .

[5]  C. Darwin The Origin of Species by Means of Natural Selection, Or, The Preservation of Favoured Races in the Struggle for Life , 1859 .

[6]  Erik Winfree,et al.  Proofreading Tile Sets: Error Correction for Algorithmic Self-Assembly , 2003, DNA.

[7]  J. Edmison,et al.  Using piezoelectric materials for wearable electronic textiles , 2002, Proceedings. Sixth International Symposium on Wearable Computers,.

[8]  E. Winfree,et al.  Algorithmic Self-Assembly of DNA Sierpinski Triangles , 2004, PLoS biology.

[9]  A. E. Waskiewicz,et al.  Burnout of Power MOS Transistors with Heavy Ions of Californium-252 , 1986, IEEE Transactions on Nuclear Science.

[10]  B H Robinson,et al.  The design of a biochip: a self-assembling molecular-scale memory device. , 1987, Protein engineering.

[11]  Richard H. Friend,et al.  Printing of polymer thin-film transistors for active-matrix-display applications , 2003 .

[12]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[13]  D. Patterson,et al.  Wafer scale integration , 1984, 1984 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[14]  J. Reif,et al.  Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures. , 2006, Angewandte Chemie.

[15]  William S. Wong,et al.  Thin‐film Transistor Fabrication by Digital Lithography , 2006 .

[16]  James G. Lennox,et al.  Aristotle's Philosophy of Biology: Studies in the Origins of Life Science , 2000 .

[17]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[18]  L. Peter Deutsch,et al.  Efficient implementation of the smalltalk-80 system , 1984, POPL.

[19]  Zamora,et al.  Electronic textiles: a platform for pervasive computing , 2003, Proceedings of the IEEE.

[20]  Thomas A. Fischer,et al.  Heavy-Ion-Induced, Gate-Rupture in Power MOSFETs , 1987, IEEE Transactions on Nuclear Science.

[21]  Henning Sirringhaus,et al.  Manufacturing of Organic Transistor Circuits by Solution‐based Printing , 2006 .

[22]  John E. Karro,et al.  Three-dimensional field-programmable gate arrays , 1995, Proceedings of Eighth International Application Specific Integrated Circuits Conference.

[23]  Adrian Thompson,et al.  An Evolved Circuit, Intrinsic in Silicon, Entwined with Physics , 1996, ICES.

[24]  Andrew M. Tyrrell,et al.  Embryonics: A Bio-Inspired Cellular Architecture with Fault-Tolerant Properties , 2000, Genetic Programming and Evolvable Machines.

[25]  Chris Dwyer,et al.  DNA self-assembled parallel computer architectures , 2004 .

[26]  Miriam Leeser,et al.  Architectural design of a three dimensional FPGA , 1997, Proceedings Seventeenth Conference on Advanced Research in VLSI.

[27]  Seth Copen Goldstein,et al.  Molecular electronics: from devices and interconnect to circuits and architecture , 2003, Proc. IEEE.

[28]  Earl E. Swartzlander,et al.  Wafer-Scale Integration: Architectures and Algorithms - Guest Editors' Introduction , 1992, Computer.

[29]  Steven Trimberger,et al.  Scheduling designs into a time-multiplexed FPGA , 1998, FPGA '98.

[30]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[31]  Donald E. Troxel,et al.  A comprehensive layout methodology and layout-specific circuit analyses for three-dimensional integrated circuits , 2002, Proceedings International Symposium on Quality Electronic Design.

[32]  Chris Dwyer,et al.  Circuit and System Architecture for DNA-Guided Self-Assembly of Nanoelectronics , 2004 .

[33]  A. Mathewson,et al.  Performance enhancement defect tolerance in the cell matrix architecture , 2004, 2004 24th International Conference on Microelectronics (IEEE Cat. No.04TH8716).

[34]  Hervé Abdi,et al.  A NEURAL NETWORK PRIMER , 1994 .

[35]  R. Stanley Williams,et al.  Trends in Nanotechnology: Self-Assembly and Defect Tolerance , 2001 .

[36]  Manfred Glesner,et al.  Defect Tolerance in a Wafer Scale Array for Image Processing , 1989 .

[37]  Kenneth Rose,et al.  First-order performance prediction of cache memory with wafer-level 3D integration , 2005, IEEE Design & Test of Computers.

[38]  Moshe Sipper,et al.  Toward self-repairing and self-replicating hardware: the Embryonics approach , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[39]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[40]  William A. MacDonald Advanced Flexible Polymeric Substrates , 2006 .

[41]  Nicholas J. Macias,et al.  Self-assembling circuits with autonomous fault handling , 2002, Proceedings 2002 NASA/DoD Conference on Evolvable Hardware.

[42]  Ian Page Constructing hardware-software systems from a single description , 1996, J. VLSI Signal Process..

[43]  Carl Ebeling,et al.  The Triptych FPGA architecture , 1995, IEEE Trans. Very Large Scale Integr. Syst..

[44]  Herman Schmit Incremental reconfiguration for pipelined applications , 1997, Proceedings. The 5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines Cat. No.97TB100186).

[45]  Joseph W. Yoder,et al.  Wafer-scale optimization using computational availability , 1992, Computer.

[46]  Martin Campbell-Kelly The Charles Babbage Institute Reprint Series for the History of Computing , 2001, IEEE Ann. Hist. Comput..

[47]  Miriam Leeser,et al.  Rothko: A three dimensional FPGA architecture, its fabrication, and design tools , 1997, FPL.

[48]  Gianluca Tempesti,et al.  Embryonics: Electronic Stem Cells , 2002 .

[49]  Chris Dwyer,et al.  Design tools for a DNA-guided self-assembling carbon nanotube technology , 2004 .

[50]  Chris Dwyer,et al.  Design automation for DNA self-assembled nanostructures , 2006, 2006 43rd ACM/IEEE Design Automation Conference.

[51]  J. Christopher Love,et al.  Technologies and Designs for Electronic Nanocomputers , 1995 .

[52]  Erik Winfree DNA Computing by Self-Assembly , 2003 .

[53]  Nicholas J. Macias,et al.  Defect-tolerant, fine-grained parallel testing of a Cell Matrix , 2002, SPIE ITCom.

[54]  Gabriele Saucier,et al.  Configuring a wafer-scale two-dimensional array of single-bit processors , 1992, Computer.

[55]  N J Macias,et al.  Adaptive methods for growing electronic circuits on an imperfect synthetic matrix. , 2004, Bio Systems.

[56]  C. Darwin Charles Darwin The Origin of Species by means of Natural Selection or The Preservation of Favoured Races in the Struggle for Life , 2004 .

[57]  P. W. Wyatt,et al.  Restructurable VLSI-a demonstrated wafer-scale technology , 1989, [1989] Proceedings International Conference on Wafer Scale Integration.

[58]  Nicholas J. Macias,et al.  A hardware implementation of the cell matrix self-configurable architecture: the Cell Matrix MOD 88/spl trade/ , 2005, 2005 NASA/DoD Conference on Evolvable Hardware (EH'05).

[59]  Erik Winfree,et al.  Neural Network Computation by In Vitro Transcriptional Circuits , 2004, NIPS.

[60]  N. Seeman Biochemistry and structural DNA nanotechnology: an evolving symbiotic relationship. , 2003, Biochemistry.

[61]  Nicholas J. Macias,et al.  The PIG paradigm: the design and use of a massively parallel fine grained self-reconfigurable infinitely scalable architecture , 1999, Proceedings of the First NASA/DoD Workshop on Evolvable Hardware.

[62]  Hugo Thienpont,et al.  An Optoelectronic 3-D Field Programmable Gate Array , 1994, FPL.

[63]  C. Darwin On the Origin of Species by Means of Natural Selection: Or, The Preservation of Favoured Races in the Struggle for Life , 2019 .

[64]  E. Winfree Simulations of Computing by Self-Assembly , 1998 .