Dynamics analysis of chaotic circuit with two memristors

Based on Chua’s chaotic oscillation circuit, a fifth-order chaotic circuit with two memristors is designed and its corresponding dimensionless mathematic model is established. By using conventional dynamical analysis methods, stability analysis of the equilibrium set of the circuit is performed, the distribution of stable and unstable regions corresponding to the memristor initial states is achieved, and the complex dynamical behaviors of the circuit depending on the circuit parameters and the memristor initial states are investigated. The theoretical analysis and numerical simulation results demonstrate that the proposed chaotic circuit with two memristors has an equilibrium set located on the plane constituted by the inner state variables of two memristors. The stability of the equilibrium set depends on both the circuit parameters and the initial states of the two memristors. Rich nonlinear dynamical phenomena, such as state transitions, transient hyperchaos and so on, are expected.

[1]  Ricardo Riaza,et al.  Nondegeneracy Conditions for Active Memristive Circuits , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[2]  Recai Kiliç,et al.  A Practical Guide for Studying Chua's Circuits , 2010 .

[3]  Hai Helen Li,et al.  Spintronic Memristor Through Spin-Torque-Induced Magnetization Motion , 2009, IEEE Electron Device Letters.

[4]  Zaihua Wang,et al.  Delayed Hopf bifurcation in time-delayed slow-fast systems , 2010 .

[5]  Leon O. Chua,et al.  Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors , 2009, Proceedings of the IEEE.

[6]  Y. Lai,et al.  Analyses of transient chaotic time series. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  L. Chua Memristor-The missing circuit element , 1971 .

[8]  Xu Jianping,et al.  Dynamical analysis of memristor chaotic oscillator , 2010 .

[9]  Giuseppe Martinelli Circuit modelling of nano-devices , 2008 .

[10]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[11]  Klaus Witrisal,et al.  Memristor-based stored-reference receiver - the UWB solution? , 2009 .

[12]  Leon O. Chua,et al.  The Four-Element Chua's Circuit , 2008, Int. J. Bifurc. Chaos.

[13]  Massimiliano Di Ventra,et al.  Memristive circuits simulate memcapacitors and meminductors , 2009, 0910.1583.

[14]  S. Benderli,et al.  On SPICE macromodelling of TiO 2 memristors , 2009 .

[15]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[16]  Bocheng Bao,et al.  Steady periodic memristor oscillator with transient chaotic behaviours , 2010 .

[17]  J. Tour,et al.  Electronics: The fourth element , 2008, Nature.

[18]  X. Jianping,et al.  Initial State Dependent Dynamical Behaviors in a Memristor Based Chaotic Circuit , 2010 .

[19]  Bharathwaj Muthuswamy,et al.  Implementing Memristor Based Chaotic Circuits , 2010, Int. J. Bifurc. Chaos.

[20]  Bharathwaj Muthuswamy,et al.  Memristor-Based Chaotic Circuits , 2009 .

[21]  Y. Pershin,et al.  Spin Memristive Systems: Spin Memory Effects in Semiconductor Spintronics , 2008, 0806.2151.

[22]  Xiaole Yue,et al.  Global analyses of crisis and stochastic bifurcation in the hardening Helmholtz-Duffing oscillator , 2010 .

[23]  Leon O. Chua,et al.  Simplest Chaotic Circuit , 2010, Int. J. Bifurc. Chaos.

[24]  Stephen J. Wolf,et al.  The elusive memristor: properties of basic electrical circuits , 2008, 0807.3994.

[25]  Dalibor Biolek,et al.  SPICE Model of Memristor with Nonlinear Dopant Drift , 2009 .