Title Breaking the limits of structural and mechanical imaging of theheterogeneous structure of coal macerals

The correlation between local mechanical (elasto-plastic) and structural (composition) properties of coal presents significant fundamental and practical interest for coal processing and for the development of rheological models of coal to coke transformations. Here, we explore the relationship between the local structural, chemical composition, and mechanical properties of coal using a combination of confocal micro-Raman imaging and band excitation atomic force acoustic microscopy for a bituminous coal. This allows high resolution imaging (10s of nm) of mechanical properties of the heterogeneous (banded) architecture of coal and correlating them to the optical gap, average crystallite size, the bond-bending disorder of sp aromatic double bonds, and the defect density. This methodology allows the structural and mechanical properties of coal components (lithotypes, microlithotypes, and macerals) to be understood, and related to local chemical structure, potentially allowing for knowledge-based modeling and optimization of coal utilization processes.

[1]  Stephen Jesse,et al.  Mapping internal structure of coal by confocal micro-Raman spectroscopy and scanning microwave microscopy , 2014 .

[2]  K. Zeng,et al.  Nanoscale elasticity mappings of micro-constituents of abalone shell by band excitation-contact resonance force microscopy. , 2014, Nanoscale.

[3]  Harold H. Schobert,et al.  Characterization of graphitic materials prepared from different rank Pennsylvania anthracites , 2013 .

[4]  Guijian Liu,et al.  Investigation of Structural Characteristics of Thermally Metamorphosed Coal by FTIR Spectroscopy and X-ray Diffraction , 2013 .

[5]  Jienan Pan,et al.  Atomic force microscopy study on microstructure of various ranks of coals , 2013 .

[6]  B. Valentim,et al.  Relationships between the optical properties of coal macerals and the chars resulting from fluidized bed pyrolysis , 2013 .

[7]  Gheorghe Stan,et al.  Nanoscale mapping of contact stiffness and damping by contact resonance atomic force microscopy , 2012, Nanotechnology.

[8]  J. Garcia-Guinea,et al.  Study of coal and graphite specimens by means of Raman and cathodoluminescence. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[9]  R. Proksch,et al.  Quantitative Viscoelastic Mapping of Polyolefin Blends with Contact Resonance Atomic Force Microscopy , 2012 .

[10]  R. Morga Reactivity of semifusinite and fusinite in the view of micro-Raman spectroscopy examination , 2011 .

[11]  R. Proksch,et al.  Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM , 2011, Nanotechnology.

[12]  R. Morga Micro-Raman spectroscopy of carbonized semifusinite and fusinite , 2011 .

[13]  Wenxuan Hu,et al.  An atomic force microscopy study of coal nanopore structure , 2011 .

[14]  N. Wagner,et al.  Investigation into the evolution of char structure using Raman spectroscopy in conjunction with coal , 2011 .

[15]  J. H. Potgieter,et al.  Raman spectroscopy for the analysis of coal: a review , 2011 .

[16]  B. Valentim,et al.  Micro-Raman spectroscopy of collotelinite, fusinite and macrinite , 2010 .

[17]  M. M. Lucchese,et al.  Quantifying ion-induced defects and Raman relaxation length in graphene , 2010 .

[18]  B. Valentim,et al.  Characterization of fly ash from a power plant and surroundings by micro-Raman spectroscopy , 2008 .

[19]  Stephen Jesse,et al.  The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale , 2007, 0708.4248.

[20]  A. Cohen,et al.  Measuring surface properties and oxidation of coal macerals using the atomic force microscope , 2005 .

[21]  J. Rouzaud,et al.  Maturation grade of coals as revealed by Raman spectroscopy: progress and problems. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[22]  J. Rouzaud,et al.  Microporosity and optical properties of some activated chars , 2002 .

[23]  Colin R. Ward,et al.  Analysis and significance of mineral matter in coal seams , 2002 .

[24]  Mathias Göken,et al.  Imaging and measurement of local mechanical material properties by atomic force acoustic microscopy , 2002 .

[25]  S. Kelemen,et al.  Maturity trends in Raman spectra from kerogen and coal , 2001 .

[26]  J. Rouzaud,et al.  On the optically biaxial character and heterogeneity of anthracites , 2000 .

[27]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[28]  P. Sastry,et al.  Structural variations in lignite coal: a small angle X-ray scattering investigation , 2000 .

[29]  I. Ivanov,et al.  A Compilation of Physical, Spectroscopic and Photophysical Properties of Polycyclic Aromatic Hydrocarbons , 1999 .

[30]  R. Bustin,et al.  Micro-FTIR spectroscopy of liptinite macerals in coal , 1998 .

[31]  J. Koch Upper limits for vitrinite and bituminite reflectance as coalification parameters , 1997 .

[32]  J. Rouzaud,et al.  Mechanisms of graphite formation from kerogen: experimental evidence , 1995 .

[33]  Ute Rabe,et al.  Acoustic microscopy by atomic force microscopy , 1994 .

[34]  Oleg Kolosov,et al.  Ultrasonic force microscopy for nanometer resolution subsurface imaging , 1994 .

[35]  M. Mastalerz,et al.  The role of shear strain in the graphitization of a high-volatile bituminous and an anthracitic coal , 1993 .

[36]  Neal E. Blair Geochimica et Cosmochimica Acta , 1992 .

[37]  W. Kilby Vitrinite reflectance measurement — Some technique enhancements and relationships , 1991 .

[38]  W. Kilby Recognition of vitrinite with non-uniaxial negative reflectance characteristics , 1988 .

[39]  B. H. Kaye,et al.  Fractal description of the surface structure of coke particles , 1987 .

[40]  A. Oberlin,et al.  A possible mechanism for natural graphite formation , 1982 .

[41]  J. Friel,et al.  Direct observation of the mesophase in coal , 1980 .

[42]  Duncan G. Murchison,et al.  Microscope Photometry , 1979 .

[43]  A. Oberlin,et al.  Filamentous growth of carbon through benzene decomposition , 1976 .

[44]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[45]  H. Gibson,et al.  Infra-red Luminescence (Fluorescence) and Reflectance of Coals, Coal Derivatives and Graphite , 1966, Nature.

[46]  G. H. Taylor,et al.  The formation of graphitizing carbons from the liquid phase , 1965 .

[47]  R. Franklin Crystallite growth in graphitizing and non-graphitizing carbons , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[48]  Organic petrology , 2015 .

[49]  X. Xiao,et al.  The relationship between micro-Raman spectral parameters and reflectance of solid bitumen , 2014 .

[50]  J. Rouzaud,et al.  Graphitization in a high-pressure, low-temperature metamorphic gradient: a Raman microspectroscopy and HRTEM study , 2002 .

[51]  J. Laureyns,et al.  Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials , 1998 .

[52]  A. Oberlin,et al.  Graphitization studies of anthracites by high resolution electron microscopy , 1975 .