On the order of composite multistep methods for ordinary differential equations

SummaryIn this paper, a general class ofk-step methods for the numerical solution of ordinary differential equations is discussed. It is shown that methods with order of consistencyq have order of convergence (q+1) if a very simple condition is satisfied. This result gives a new aspect to previous results of Spijker; it also serves as a starting point for a new theory of cyclick-step methods, completing an approach of Donelson and Hansen. It facilitates the practical determination of high-order cyclick-step methods, especially of stiffly stable,k-step methods.