Green preparation of transition metal oxide catalysts using supercritical CO2 anti-solvent precipitation for the total oxidation of propane

[1]  G. Hutchings,et al.  Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature , 2011 .

[2]  T. García,et al.  The effect of gold addition on the catalytic performance of copper manganese oxide catalysts for the total oxidation of propane , 2011 .

[3]  T. García,et al.  Deep oxidation of volatile organic compounds using ordered cobalt oxides prepared by a nanocasting route , 2010 .

[4]  Peter J. Miedziak,et al.  Ceria prepared using supercritical antisolvent precipitation: a green support for gold–palladium nanoparticles for the selective catalytic oxidation of alcohols , 2009 .

[5]  Christopher D. Jones,et al.  New Nanocrystalline Cu/MnOx Catalysts Prepared from Supercritical Antisolvent Precipitation , 2009 .

[6]  G. Hutchings,et al.  Copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of calcination on activity , 2009 .

[7]  Kangnian Fan,et al.  Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane , 2009 .

[8]  K. Xie,et al.  Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique , 2009 .

[9]  T. García,et al.  Total oxidation of propane using nanocrystalline cobalt oxide and supported cobalt oxide catalysts , 2008 .

[10]  Chen-Bin Wang,et al.  Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS , 2008 .

[11]  W. Chu,et al.  Selective catalytic reduction of NO by C3H8 over CoOx/Al2O3: An investigation of structure–activity relationships , 2008 .

[12]  E. Reverchon,et al.  Supercritical AntiSolvent micronization of nalmefene HCl on laboratory and pilot scale , 2008 .

[13]  Enza Torino,et al.  Nanoparticles production by supercritical antisolvent precipitation: A general interpretation , 2007 .

[14]  T. Wanjun,et al.  Mechanism of thermal decomposition of cobalt acetate tetrahydrate , 2007 .

[15]  Stuart H. Taylor,et al.  Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts , 2007 .

[16]  L. Cadús,et al.  Combustion of volatile organic compounds on manganese iron or nickel mixed oxide catalysts , 2007 .

[17]  T. García,et al.  Complete oxidation of short chain alkanes using a nanocrystalline cobalt oxide catalyst , 2007 .

[18]  L. Cadús,et al.  Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts , 2006 .

[19]  Stuart H. Taylor,et al.  Nanocrystalline cobalt oxide: a catalyst for selective alkane oxidation under ambient conditions. , 2006, Chemical communications.

[20]  Ryoji Noyori,et al.  Pursuing practical elegance in chemical synthesis. , 2005, Chemical communications.

[21]  Eric J. Beckman,et al.  Supercritical and near-critical CO2 in green chemical synthesis and processing , 2004 .

[22]  H. Zeng,et al.  Dimensional Control of Cobalt-hydroxide-carbonate Nanorods and Their Thermal Conversion to One-Dimensional Arrays of Co3O4 Nanoparticles , 2003 .

[23]  E. Beckman Green chemical processing using CO2 , 2003 .

[24]  J. M. Webster,et al.  The supercritical fluid antisolvent synthesis of C60(C2Hx) (x=4 or 6); the crystal structures of two materials which were thought unlikely to exist. , 2002, Angewandte Chemie.

[25]  J. M. Webster,et al.  Amorphous vanadium phosphate catalysts prepared using precipitation with supercritical CO2 as an antisolvent , 2002 .

[26]  E. Reverchon,et al.  Tailoring of nano- and micro-particles of some superconductor precursors by supercritical antisolvent precipitation , 2002 .

[27]  J. M. Webster,et al.  Amorphous vanadium phosphate catalysts from supercritical antisolvent precipitation , 2001 .

[28]  Paul T. Anastas,et al.  Green chemical syntheses and processes , 2000 .

[29]  J. M. Webster,et al.  Precipitation of Solvent-Free C60(CO2)0.95 from Conventional Solvents: A New Antisolvent Approach to Controlled Crystal Growth Using Supercritical Carbon Dioxide , 2000 .

[30]  B. K. Hodnett,et al.  The influence of volatile organic compound structure on conditions required for total oxidation , 1999 .

[31]  E. Reverchon,et al.  Production of antibiotic micro- and nano-particles by supercritical antisolvent precipitation , 1999 .

[32]  P. Ciambelli,et al.  Supercritical antisolvent precipitation of nanoparticles of a zinc oxide precursor , 1999 .

[33]  G. Busca,et al.  Characterization of manganese and iron oxides as combustion catalysts for propane and propene , 1998 .

[34]  P. Ciambelli,et al.  Supercritical AntiSolvent Precipitation: a Novel Technique to Produce Catalyst Precursors. Preparation and Characterization of Samarium Oxide Nanoparticles. , 1998 .

[35]  L. Christel,et al.  Temperature programmed reduction studies of nickel manganite spinels , 1997 .

[36]  B. Finlayson‐Pitts,et al.  Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. , 1997, Science.

[37]  Z. Nickolov,et al.  Raman and IR study of cobalt acetate dihydrate , 1995 .

[38]  T. L. Chester,et al.  Estimation of liquid-vapor critical loci for CO2-solvent mixtures using a peak-shape method. , 1995, Analytical chemistry.

[39]  D. J. Dixon,et al.  Microcellular microspheres and microballoons by precipitation with a vapour-liquid compressed fluid antisolvent , 1994 .

[40]  A. Nardella,et al.  Characterization of copper-manganese mixed oxides , 1991 .

[41]  Henning Rodhe,et al.  A Comparison of the Contribution of Various Gases to the Greenhouse Effect , 1990, Science.

[42]  M. Molina,et al.  Stratospheric sink for chlorofluoromethanes: chlorine atomc-atalysed destruction of ozone , 1974, Nature.