Enhanced adaptive motion tracking control of piezo-actuated flexure-based four-bar mechanisms for micro/nano manipulation

Abstract This paper establishes and investigates an enhanced adaptive motion tracking control methodology for piezo-actuated flexure-based four-bar micro/nano manipulation mechanisms. This control methodology is proposed for tracking desired motion trajectories in the presence of unknown or uncertain system parameters, non-linearities including the hysteresis effect, and external disturbances in the motion systems. In this paper, the equations for the modelling of a flexure-hinged four-bar micro/nano mechanism are established. These include the angular stiffness, ‘static’ linear stiffness, equation of motion, and lowest structural resonance of the mechanism. In addition, a lumped parameter dynamic model that combines the piezoelectric actuator and the micro/nano mechanism is established for the formulation of the proposed control methodology. The stability of the control approach is analysed, and the convergence of the position and velocity tracking errors to zero is proven theoretically. A precise tracking performance in following a desired motion trajectory is also demonstrated in the experimental study. An important advantage of this control methodology is that the approach requires only a knowledge of the estimated lumped system parameters in the physical realisation. This proposed motion tracking control methodology is very attractive for the implementation of high performance flexure-based micro/nano manipulation control applications.

[1]  J. M. Paros,et al.  Flexure Pivots to Replace Knife Edge and Ball Bearing , 1965 .

[2]  Bijan Shirinzadeh,et al.  Sliding-Mode Enhanced Adaptive Motion Tracking Control of Piezoelectric Actuation Systems for Micro/Nano Manipulation , 2008, IEEE Transactions on Control Systems Technology.

[3]  Dongwoo Song,et al.  Modeling of piezo actuator’s nonlinear and frequency dependent dynamics , 1999 .

[4]  Y. Egashira,et al.  Development of nano-surgery system for cell organelles , 2002, Proceedings of the 41st SICE Annual Conference. SICE 2002..

[5]  B. Shirinzadeh,et al.  Topology optimisation and singularity analysis of a 3-SPS parallel manipulator with a passive constraining spherical joint , 2004 .

[6]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[7]  Chih-Jer Lin,et al.  PRECISE POSITIONING OF PIEZO-ACTUATED STAGES USING HYSTERESIS-OBSERVER BASED CONTROL , 2006 .

[8]  Yonghong Tan,et al.  An inner product-based dynamic neural network hysteresis model for piezoceramic actuators , 2005 .

[9]  K. Spanner,et al.  Advances in piezo-nanopositioning technology , 2003, Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003).

[10]  Cameron N. Riviere,et al.  Modeling rate-dependent hysteresis in piezoelectric actuators , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[11]  C.N. Riviere,et al.  Active tremor compensation in microsurgery , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[12]  S H Chang,et al.  An ultra-precision XYtheta(Z) piezo-micropositioner. I. Design and analysis. , 1999, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[13]  Shuo-Hung Chang,et al.  An ultra-precision XY/spl Theta//sub Z/ piezo-micropositioner. II. Experiment and performance , 1999 .

[14]  Li Chuntao,et al.  A neural networks model for hysteresis nonlinearity , 2004 .

[15]  Bijan Shirinzadeh,et al.  Optimum synthesis of planar parallel manipulators based on kinematic isotropy and force balancing , 2004, Robotica.

[16]  Kee S. Moon,et al.  Inverse kinematic modeling of a coupled flexure hinge mechanism , 1999 .

[17]  N.V. Thakor,et al.  Adaptive cancelling of physiological tremor for improved precision in microsurgery , 1998, IEEE Transactions on Biomedical Engineering.

[18]  Yonghong Tan,et al.  Modeling hysteresis using hybrid method of continuous transformation and neural networks , 2005 .

[19]  Xuanju Dang,et al.  Neural networks dynamic hysteresis model for piezoceramic actuator based on hysteresis operator of first-order differential equation , 2005 .

[20]  Faa-Jeng Lin,et al.  Adaptive tracking control solely using displacement feedback for a piezo-positioning mechanism , 2004 .

[21]  Kee S. Moon,et al.  Optimal design of a flexure hinge based XYφ wafer stage , 1997 .

[22]  Hwee Choo Liaw,et al.  Special class of positive definite functions for formulating adaptive micro/nano manipulator control , 2006, 9th IEEE International Workshop on Advanced Motion Control, 2006..

[23]  Musa Jouaneh,et al.  Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators , 1997 .

[24]  P. Gao,et al.  A new piezodriven precision micropositioning stage utilizing flexure hinges , 1999 .

[25]  Y. Somov Modelling physical hysteresis and control of a fine piezo-drive , 2003, 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775).

[26]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .

[27]  Bijan Shirinzadeh,et al.  Kinematics and stiffness analyses of a flexure-jointed planar micromanipulation system for a decoupled compliant motion , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[28]  Sabri Cetinkunt,et al.  Design, fabrication, and real-time neural network control of a three-degrees-of-freedom nanopositioner , 2000 .

[29]  Bijan Shirinzadeh,et al.  The measurement uncertainties in the laser interferometry-based sensing and tracking technique , 2002 .

[30]  J.A. De Abreu-Garcia,et al.  Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.

[31]  Bijan Shirinzadeh,et al.  Enhanced stiffness modeling, identification and characterization for robot manipulators , 2005, IEEE Transactions on Robotics.

[32]  Willem L. De Koning,et al.  State-space analysis and identification for a class of hysteretic systems , 2001, Autom..

[33]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .

[34]  Dennis S. Bernstein,et al.  Semilinear Duhem model for rate-independent and rate-dependent hysteresis , 2005, IEEE Transactions on Automatic Control.

[35]  J. Paros How to design flexure hinges , 1965 .

[36]  K.K. Tan,et al.  Computer controlled piezo micromanipulation system for biomedical applications , 2001 .

[37]  Bijan Shirinzadeh,et al.  Optimum dynamic balancing of planar parallel manipulators based on sensitivity analysis , 2006 .

[38]  Jonq-Jer Tzen,et al.  Modeling of piezoelectric actuator for compensation and controller design , 2003 .

[39]  Il Hong Suh,et al.  Design and experiment of a 3-DOF parallel micromechanism utilizing flexure hinges , 2002, IEEE Trans. Robotics Autom..

[40]  Nagi G. Naganathan,et al.  Dynamic Preisach modelling of hysteresis for the piezoceramic actuator system , 2001 .

[41]  Bijan Shirinzadeh Laser‐interferometry‐based tracking for dynamic measurements , 1998 .

[42]  Xuemei Sun,et al.  Analysis and control of monolithic piezoelectric nano-actuator , 2001, IEEE Trans. Control. Syst. Technol..

[43]  Chih-Lyang Hwang,et al.  Trajectory tracking of large-displacement piezoelectric actuators using a nonlinear observer-based variable structure control , 2005, IEEE Transactions on Control Systems Technology.

[44]  Stuart T. Smith,et al.  Flexures: Elements of Elastic Mechanisms , 2000 .

[45]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[46]  Lining Sun,et al.  Improving positioning accuracy of piezoelectric actuators by feedforward hysteresis compensation based on a new mathematical model , 2005 .

[47]  Jean-Jacques E. Slotine,et al.  Adaptive manipulator control: A case study , 1988 .

[48]  Bijan Shirinzadeh,et al.  A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing , 2005 .

[49]  Tien-Fu Lu,et al.  A three-DOF compliant micromotion stage with flexure hinges , 2004, Ind. Robot.

[50]  T. Low,et al.  Modeling of a three-layer piezoelectric bimorph beam with hysteresis , 1995 .

[51]  Bijan Shirinzadeh,et al.  Enhanced sliding mode motion tracking control of piezoelectric actuators , 2007 .

[52]  I-Ming Chen,et al.  Stiffness modeling of flexure parallel mechanism , 2005 .

[53]  R. Ben Mrad,et al.  A model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations , 2002 .