Transport of cross helicity and radial evolution of Alfvénicity in the solar wind

[1] A transport theory including cross helicity, magnetohydrodynamic (MHD) turbulence, and driving by shear and pickup ions, is applied to the radial evolution of the solar wind. The radial decrease of cross helicity observed in the solar wind can be accounted for when sufficient driving is included to overcome the inherent tendency for MHD turbulence to produce Alfvenic states.

[1]  M. Goldstein,et al.  Spectral evolution and cascade constant of solar wind Alfvénic turbulence , 1989 .

[2]  W. Matthaeus,et al.  Transport and turbulence modeling of solar wind fluctuations , 1990 .

[3]  W. Matthaeus,et al.  Evolution of energy-containing turbulent eddies in the solar wind , 1994 .

[4]  F. Mariani,et al.  Radial evolution of power spectra of interplanetary Alfvénic turbulence , 1981 .

[5]  B. Bavassano,et al.  On the evolution of outward and inward Alfvénic fluctuations in the polar wind , 2000 .

[6]  E. Marsch,et al.  Basic properties of solar wind MHD turbulence near 0.3 AU analyzed by means of Elsässer variables , 1989 .

[7]  Frisch,et al.  Growth of correlations in magnetohydrodynamic turbulence. , 1986, Physical review. A, General physics.

[8]  E. Marsch,et al.  A model of solar wind fluctuations with two components: Alfvén waves and convective structures , 1993 .

[9]  W. Matthaeus,et al.  Turbulent Heating of the Distant Solar Wind by Interstellar Pickup Protons , 2003 .

[10]  W. Matthaeus,et al.  Turbulent generation of outward-traveling interplanetary Alfvenic fluctuations , 1983 .

[11]  W. Matthaeus,et al.  Evolution of turbulent magnetic fluctuation power with heliospheric distance , 1996 .

[12]  D. Aaron Roberts,et al.  Velocity shear generation of solar wind turbulence , 1992 .

[13]  W. Matthaeus,et al.  Turbulence, spatial transport, and heating of the solar wind , 1999 .

[14]  Pierluigi Veltri,et al.  Fully developed anisotropic hydromagnetic turbulence in interplanetary space , 1980 .

[15]  W. Matthaeus,et al.  Relaxation processes in a low-order three-dimensional magnetohydrodynamics model , 1991 .

[16]  W. Matthaeus,et al.  Linear transport of solar wind fluctuations , 1995 .

[17]  P. C. Gray,et al.  Phenomenology for the decay of energy-containing eddies in homogeneous MHD turbulence , 1995 .

[18]  N. Ness,et al.  Statistical properties of MHD fluctuations associated with high-speed streams from Helios-2 observations , 1982 .

[19]  L. Davis,et al.  Large-Amplitude Alfvn Waves in the Interplanetary Medium' , 1971 .

[20]  J. Richardson,et al.  Heating of the low‐latitude solar wind by dissipation of turbulent magnetic fluctuations , 2001 .

[21]  D. A. Roberts,et al.  Origin and evolution of fluctuations in the solar wind: Helios observations and Helios-Voyager comparisons , 1987 .

[22]  W. Matthaeus,et al.  Toward an Ab Initio Theory of the Solar Modulation of Cosmic Rays , 2003 .

[23]  E. Marsch,et al.  Dynamics of correlation functions with Elsässer variables for inhomogeneous MHD turbulence , 1989, Journal of Plasma Physics.

[24]  T. Horbury,et al.  Properties of Magnetohydrodynamic Turbulence in the Solar Wind as Observed , 1995 .