Microspectroscopy on perovskite-based superlenses

Superlenses create sub-diffraction-limit images by reconstructing the evanescent fields arising from an object. We study the lateral, vertical, and spectral field distribution of three different perovskite-based superlenses by means of scattering-type near-field microscopy. Subdiffraction-limit resolution is observed for all samples with an image contrast depending on losses such as scattering and absorption. For the three lenses superlensing is observed at slightly different frequencies resulting in an overall broad frequency range of 3.6 THz around 20 THz. © 2011 Optical Society of America OCIS codes: (180.4243) Near-field microscopy; (160.3918) Metamaterials; (160.3220) Ionic crystals; (100.6640) Superresolution. References and links 1. V. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ ,” Sov. Phys. Usp. 10, 509–514 (1968). 2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). 3. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007). 4. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008). 5. U. Leonhardt and T. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247–1–18 (2006). 6. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). 7. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). 8. D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). 9. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009). 10. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). #149016 $15.00 USD Received 1 Jul 2011; revised 19 Aug 2011; accepted 19 Aug 2011; published 30 Aug 2011 (C) 2011 OSA 1 September 2011 / Vol. 1, No. 5 / OPTICAL MATERIALS EXPRESS 1051 11. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 22, 534–537 (2005). 12. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595 (2006). 13. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nature mater. 7, 435–441 (2008). 14. M. C. K. Wiltshire, J. Pendy, I. Young, D. Larkman, D. Gilderdale, and J. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001). 15. T. J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004). 16. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005). 17. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer, “Ferroelectric thin films: Review of materials properties, and applications,” J. Appl. Phys. 100, 051606 (2006). 18. S. Jin, T. Tiefel, M. McCormack, R. Fastnacht, R. Ramesh, and L. Chen, “Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films,” Science 264, 413–415 (1994). 19. M. K. Wu, J. Ashburn, C. Torng, P. Hor, R. Meng, L. Gao, Z. Huang, Y. Wang, and C. Chu, “Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure,” Phys. Rev. Lett. 58, 908–910 (1987). 20. J. Scott, Ferroelectric Memories (Springer Series in Advanced Microelectronics, Vol. 3, Heidelberg, New York, 2000). 21. R. Waser, Nanoelectronics and Information Technology (Wiley-CH, Weinheim, 2003). 22. S. C. Kehr, Y. Liu, L. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. Eng, and R. Ramesh, “Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling,” Nat. Commun. 2, 249, DOI:10.1038/ncomms1249 (2011). 23. R. Shelby, D. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). 24. W. Spitzer, R. C. Miller, D. Kleinman, and L. Howarth, “Far infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2,” Phys. Rev. 126, 1710–1721 (1962). 25. S. Kamba, D. Nuzhnyy, M. Savinov, J. S̆ebek, J. Petzelt, J. Prokles̆ka, R. Haumont, and J. Kreisel, “Infrared and terahertz studies of polar phonons and magnetodielectric effect in multiferroic BiFeO3 ceramics,” Phys. Rev. B 75, 024403 (2007). 26. T. D. Kang, G. S. Lee, H. S. Lee, H. Lee, Y. S. Kang, S.-J. Cho, B. Xiao, H. Morkoç, and P. G. Snyder, “Infrared ellipsometric study on PZT thin films,” J. Korean Phys. Soc. 49, 1604–1610 (2006). 27. F. Zenhausern, M. O’Boyle, and H. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994). 28. F. Zenhausern, Y. Martin, and H. Wickramasinghe, “Scanning interferometric apertureless microscopy: Optical imaging at 10 Angstrom resolution,” Science 269, 1083–1085 (1995). 29. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: Optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991). 30. S. C. Schneider, J. Seidel, S. Grafström, L. Eng, S. Winnerl, D. Stehr, and M. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90, 143101 (2007). 31. S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100, 256403 (2008). 32. G. Wurtz, R. Bachelot, and P. Royer, “Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy,” Eur. Phys. J. Appl. Phys. 5, 269–275 (1999). 33. B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000). 34. R. Hillenbrand and F. Keilmann, “Complex Optical Constants on a Subwavelength Scale,” Phys. Rev. Lett. 85, 3029–3032 (2000). 35. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light-matter interaction at the nanometre scale,” Nature 418, 159–162 (2002). 36. T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanomechanical Resonance Tuning and Phase Effects in Optical Near-Field Interaction,” Nano Lett. 4, 1669–1672 (2004). 37. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1608 (2005). 38. I. Fedorov, J. Petzelt, V. Zelezny, G. A. Komandin, A. A. Volkov, K. Brooks, Y. Huang, and N. Setter, “Farinfrared dielectric response of PbTiO3 and PbZr1−xTixO3 thin ferroelectric films,” J. Phys.: Condens. Matter 7, 4313–4323 (1995). #149016 $15.00 USD Received 1 Jul 2011; revised 19 Aug 2011; accepted 19 Aug 2011; published 30 Aug 2011 (C) 2011 OSA 1 September 2011 / Vol. 1, No. 5 / OPTICAL MATERIALS EXPRESS 1052

X. Zhang | L. Zschiedrich | T. Tiefel | R. Bachelot | Yongmin Liu | T. Zentgraf | C. Soukoulis | S. Winnerl | M. Helm | T. Koschny | A. Kingon | M. Gajek | J. Trautman | R. Ramesh | M. Cebula | S. Streiffer | J. Petzelt | P. Yu | L. Eng | I. Stolitchnov | A. K. Taganstev | R. Haumont | A. Khan | H. V. Ribbeck | A. Volkov | S. C. Kehr | R. Kostelak | G. Komandin | I. Young | H. Eisler | S. Nemat-Nasser | T. Härtling | P. Hor | O. Mieth | D. Stehr | M. Parzefall | M. T. Wenzel | R. Jacob | J. Ashburn | D. Gilderdale | Xiang Zhang | D. Taylor | M. Savinov | H. von Ribbeck | Z. Huang | Infrared | T. Yamada | F. Keilmann | B. Justice | S. Linden | M. Wegener | J. Li | S.J. Cho | J. Hajnal | M. Wenzel | T. D. Harris | P. Yu | Yongmin M Liu | M. Helm | Xiang Zhang | L. Eng | R. Ramesh | W. R. J. Smith | D. C. Padilla | S. C. Vier | Schultz | H J Lezec | J. Dionne | H. A. Atwater | P. Yao | Z. Liu | Y. Liu | Y. Wang | C. Sun | G. Bartal | A. M. Stacy | D Schurig | J. Mock | S. Cummer | J. Pendry | A. Starr | D. Smith | J Valentine | N Fang | H. Lee | M C K Wiltshire | J. Pendy | D. Larkman | Microstructured | T J Yen | W. Padilla | N. Fang | D. Vier | D. Basov | C Enkrich | S. Burger | F. Schmidt | J. Zhou | N Setter | D. Damjanovic | G. Fox | S. Gevorgian | S. Hong | H. Kohlstedt | N. Y. Park | G. B. Stephenson | S. Jin | M. Mccormack | R. Fastnacht | L. Chen | M K Wu | C. Torng | P. Hor | R. Meng | L. Gao | C. Chu | Superconductivity | L. Martin | S.Y. Yang | C.-H Yang | W Spitzer | R. C. Miller | D. Kleinman | L. Howarth | S Kamba | D. Nuzhnyy | J. Šebek | J. Prokle | J. Kreisel | T D Kang | G. S. Lee | Y. S. Kang | B. Xiao | H. Morkoc | P. G. Snyder | F Zenhausern | M. O 'boyle | H. Wickramasinghe | E Betzig | J. Weiner | S C Schneider | J. Seidel | S. Grafström | S C Kehr | Wurtz | P. Royer | B Knoll | P Mühlschlegel | O. Martin | B. Hecht | D. W. Pohl | I Fedorov | V. Zelezny | K. Brooks | Y. Huang | N. Setter | Y. Wang | C.-H. Yang

[1]  Rainer Waser,et al.  Nanoelectronics and Information Technology , 2012 .

[2]  M. Helm,et al.  Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling , 2011, Nature communications.

[3]  G. Bartal,et al.  An optical cloak made of dielectrics. , 2009, Nature materials.

[4]  Zhaowei Liu,et al.  Optical Negative Refraction in Bulk Metamaterials of Nanowires , 2008, Science.

[5]  S Winnerl,et al.  Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser. , 2008, Physical review letters.

[6]  Zhaowei Liu,et al.  Superlenses to overcome the diffraction limit. , 2008, Nature materials.

[7]  H. Lezec,et al.  Negative Refraction at Visible Frequencies , 2007, Science.

[8]  D. Stehr,et al.  Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy , 2007 .

[9]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[10]  J. Kreisel,et al.  Infrared and terahertz studies of polar phonons and magnetodielectric effect in multiferroic Bi Fe O 3 ceramics , 2006, cond-mat/0611007.

[11]  G. Shvets,et al.  Near-Field Microscopy Through a SiC Superlens , 2006, Science.

[12]  S. Gevorgian,et al.  Ferroelectric thin films: Review of materials, properties, and applications , 2006 .

[13]  Ulf Leonhardt,et al.  General relativity in electrical engineering , 2006, SPIE Optics + Optoelectronics.

[14]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[15]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[16]  L. Zschiedrich,et al.  Magnetic metamaterials at telecommunication and visible frequencies. , 2005, Physical review letters.

[17]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[18]  F. Keilmann,et al.  Nanomechanical resonance tuning and phase effects in optical near-field interaction , 2004 .

[19]  Willie J Padilla,et al.  Terahertz Magnetic Response from Artificial Materials , 2004, Science.

[20]  F. Keilmann,et al.  Phonon-enhanced light–matter interaction at the nanometre scale , 2002, Nature.

[21]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[22]  D. Larkman,et al.  Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. , 2001, Science.

[23]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[24]  F. Keilmann,et al.  Complex optical constants on a subwavelength scale. , 2000, Physical review letters.

[25]  Fritz Keilmann,et al.  Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy , 2000 .

[26]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[27]  G. Wurtz,et al.  Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy , 1999 .

[28]  Y. Martin,et al.  Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution , 1995, Science.

[29]  Yuhong Huang,et al.  Far-infrared dielectric response of PbTiO3 and PbZr1-xTixO3 thin ferroelectric films , 1995 .

[30]  T. Tiefel,et al.  Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films , 1994, Science.

[31]  T. D. Harris,et al.  Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale , 1991, Science.

[32]  Chu,et al.  Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure. , 1987, Physical review letters.

[33]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[34]  R. C. Miller,et al.  Far Infrared Dielectric Dispersion in BaTiO3, SrTiO3, and TiO2 , 1962 .

[35]  D. Pohl,et al.  Resonant optical antennas and single emitters , 2007 .

[36]  P. G. Snyder,et al.  Infrared ellipsometric study on PZT thin films , 2006 .

[37]  T. J. Watson,et al.  Apertureless near-field optical microscope , 1999 .