14.1% CsPbI3 Perovskite Quantum Dot Solar Cells via Cesium Cation Passivation

[1]  Ashley R. Marshall,et al.  Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics , 2016, Science.

[2]  Henry J. Snaith,et al.  Stability of Metal Halide Perovskite Solar Cells , 2015 .

[3]  Vaidyanathan Subramanian,et al.  Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. , 2006, Journal of the American Chemical Society.

[4]  Yixin Zhao,et al.  Efficient α-CsPbI3 Photovoltaics with Surface Terminated Organic Cations , 2018, Joule.

[5]  Cherie R. Kagan,et al.  Prospects of nanoscience with nanocrystals. , 2015, ACS nano.

[6]  Anders Hagfeldt,et al.  Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% , 2016, Nature Energy.

[7]  Moungi G. Bawendi,et al.  Observation of solvatochromism in CdSe colloidal quantum dots , 2001 .

[8]  Illan J. Kramer,et al.  Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance , 2016, Advanced materials.

[9]  Q. Akkerman,et al.  Strongly emissive perovskite nanocrystal inks for high-voltage solar cells , 2016, Nature Energy.

[10]  Fan Yang,et al.  High‐Efficiency PbS Quantum‐Dot Solar Cells with Greatly Simplified Fabrication Processing via “Solvent‐Curing” , 2018, Advanced materials.

[11]  Gerasimos Konstantatos,et al.  The role of surface passivation for efficient and photostable PbS quantum dot solar cells , 2016, Nature Energy.

[12]  Kang Wang,et al.  Iodine‐Optimized Interface for Inorganic CsPbI2Br Perovskite Solar Cell to Attain High Stabilized Efficiency Exceeding 14% , 2018, Advanced science.

[13]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[14]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[15]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[16]  Kang L. Wang,et al.  Interstitial Mn2+-Driven High-Aspect-Ratio Grain Growth for Low-Trap-Density Microcrystalline Films for Record Efficiency CsPbI2Br Solar Cells , 2018 .

[17]  M. Loi,et al.  In Situ Passivation for Efficient PbS Quantum Dot Solar Cells by Precursor Engineering , 2018, Advanced materials.

[18]  Bryon W. Larson,et al.  Promoting Morphology with a Favorable Density of States Using Diiodooctane to Improve Organic Photovoltaic Device Efficiency and Charge Carrier Lifetimes , 2017 .

[19]  Aram Amassian,et al.  2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids , 2018, Nature Nanotechnology.

[20]  J. Luther,et al.  Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe-ZnO Tunnel Junction. , 2017, Nano letters.

[21]  S. Cheung,et al.  A Universal Strategy to Utilize Polymeric Semiconductors for Perovskite Solar Cells with Enhanced Ef.ciency and Longevity , 2018 .

[22]  Franco Cacialli,et al.  Inorganic caesium lead iodide perovskite solar cells , 2015 .

[23]  Aram Amassian,et al.  Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. , 2011, Nature materials.

[24]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[25]  Matthew C. Beard,et al.  Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells , 2017, Science Advances.

[26]  Tae-Youl Yang,et al.  A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells , 2018, Nature Energy.

[27]  Guozheng Shi,et al.  Broadband Enhancement of PbS Quantum Dot Solar Cells by the Synergistic Effect of Plasmonic Gold Nanobipyramids and Nanospheres , 2018 .

[28]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[29]  Aram Amassian,et al.  Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. , 2017, Nature materials.

[30]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[31]  Yannan Zhang,et al.  Synthesis of cesium-doped ZnO nanoparticles as an electron extraction layer for efficient PbS colloidal quantum dot solar cells , 2018 .

[32]  Zhongquan Wan,et al.  Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic Lewis acid , 2018 .

[33]  J. Bisquert,et al.  Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation , 2015 .

[34]  Oleksandr Voznyy,et al.  10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation. , 2016, Nano letters.

[35]  Zhike Liu,et al.  Room-Temperature Processed Nb2O5 as the Electron-Transporting Layer for Efficient Planar Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[36]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[37]  Ying Chen,et al.  Exciton Relaxation Dynamics in Photo-Excited CsPbI3 Perovskite Nanocrystals , 2016, Scientific Reports.

[38]  Ashley R. Marshall,et al.  Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics. , 2018, Journal of the American Chemical Society.

[39]  Wanli Ma,et al.  High‐Efficiency Hybrid Solar Cells Based on Polymer/PbSxSe1‐x Nanocrystals Benefiting from Vertical Phase Segregation , 2013, Advanced materials.

[40]  Guozheng Shi,et al.  Stable and Highly Efficient PbS Quantum Dot Tandem Solar Cells Employing a Rationally Designed Recombination Layer , 2017 .

[41]  Q. Wang,et al.  Temperature-assisted crystallization for inorganic CsPbI2Br perovskite solar cells to attain high stabilized efficiency 14.81% , 2018, Nano Energy.

[42]  Q. Wang,et al.  Graded Bandgap CsPbI2+Br1− Perovskite Solar Cells with a Stabilized Efficiency of 14.4% , 2018, Joule.

[43]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[44]  Z. Yin,et al.  Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells , 2018, Nature Communications.

[45]  Xingyu Gao,et al.  Band-Aligned Polymeric Hole Transport Materials for Extremely Low Energy Loss α-CsPbI3 Perovskite Nanocrystal Solar Cells , 2018, Joule.

[46]  Yixin Zhao,et al.  Bifunctional Stabilization of All-Inorganic α-CsPbI3 Perovskite for 17% Efficiency Photovoltaics. , 2018, Journal of the American Chemical Society.

[47]  I. Infante,et al.  Surface Termination, Morphology, and Bright Photoluminescence of Cesium Lead Halide Perovskite Nanocrystals , 2016 .

[48]  Michael Grätzel,et al.  Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells , 2017, Science Advances.

[49]  Matt Law,et al.  Schottky solar cells based on colloidal nanocrystal films. , 2008, Nano letters.

[50]  Jianbo Gao,et al.  Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. , 2014, ACS nano.

[51]  Maksym V. Kovalenko,et al.  Properties and potential optoelectronic applications of lead halide perovskite nanocrystals , 2017, Science.

[52]  Hui Bian,et al.  3D–2D–0D Interface Profiling for Record Efficiency All‐Inorganic CsPbBrI2 Perovskite Solar Cells with Superior Stability , 2018 .

[53]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[54]  G. Wang,et al.  µ‐Graphene Crosslinked CsPbI3 Quantum Dots for High Efficiency Solar Cells with Much Improved Stability , 2018 .

[55]  K. Yoshino,et al.  Ultrafast Electron Injection from Photoexcited Perovskite CsPbI3 QDs into TiO2 Nanoparticles with Injection Efficiency near 99. , 2018, The journal of physical chemistry letters.

[56]  Cherie R. Kagan,et al.  Building devices from colloidal quantum dots , 2016, Science.

[57]  Peng Gao,et al.  Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. , 2014, Nano letters.

[58]  Moungi G. Bawendi,et al.  Improved performance and stability in quantum dot solar cells through band alignment engineering , 2014, Nature materials.