Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude

All-optical control of plasmons can enable optical switches with high speeds, small footprints and high on/off ratios. Here we demonstrate ultrafast plasmon modulation in the near-infrared (NIR) to mid-infrared (MIR) range by intraband pumping of indium tin oxide nanorod arrays (ITO-NRAs). We observe redshifts of localized surface plasmon resonances arising from a change of the plasma frequency of ITO, which is governed by the conduction band non-parabolicity. We generalize the plasma frequency for non-parabolic bands, quantitatively model the fluence-dependent plasma frequency shifts, and show that different from noble metals, the lower electron density in ITO enables a remarkable change of electron distributions, yielding a significant plasma frequency modulation and concomitant large transient bleaches and induced absorptions, which can be tuned spectrally by tailoring the ITO-NRA geometry. The low electron heat capacity explains the sub-picosecond kinetics that is much faster than noble metals. Our work demonstrates a new scheme to control infrared plasmons for optical switching, telecommunications and sensing. Ultrafast plasmon modulation has been realized in the near- to mid-infrared range by intraband pumping of indium tin oxide nanorod arrays.

[1]  C. N. Lau,et al.  Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump-probe nanoscopy. , 2014, Nano letters.

[2]  R Atkinson,et al.  Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime. , 2008, Optics express.

[3]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[4]  Junghyun Park,et al.  Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties , 2014 .

[5]  G. Wiederrecht,et al.  Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. , 2011, Nature nanotechnology.

[6]  M. Broyer,et al.  Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles , 2004 .

[7]  E. Weiss,et al.  Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods. , 2014, Nano letters.

[8]  M. Wuttig,et al.  A Switchable Mid‐Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability , 2015, Advanced materials.

[9]  Gennady Shvets,et al.  Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. , 2012, Nature materials.

[10]  Stefan A. Maier,et al.  Ultrafast plasmonic nanowire lasers near the surface plasmon frequency , 2014, Nature Physics.

[11]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[12]  Mohsen Rahmani,et al.  University of Birmingham Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna , 2016 .

[13]  Martina Abb,et al.  Hotspot-mediated ultrafast nonlinear control of multifrequency plasmonic nanoantennas , 2014, Nature Communications.

[14]  Nikolay I. Zheludev,et al.  Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals , 2008 .

[15]  Min Seok Jang,et al.  Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. , 2013, Nano letters.

[16]  Mark D. Losego,et al.  Surface plasmon resonance in conducting metal oxides , 2006 .

[17]  Li-Wei Chou,et al.  Optically abrupt localized surface plasmon resonances in si nanowires by mitigation of carrier density gradients. , 2015, ACS nano.

[18]  V. Podolskiy,et al.  Nanowire metamaterials with extreme optical anisotropy , 2006, physics/0604065.

[19]  Robert P. H. Chang,et al.  Plasmonic–Photonic Mode Coupling in Indium-Tin-Oxide Nanorod Arrays , 2014 .

[20]  A. Kolodziej,et al.  Nonparabolicity of the conduction band stucture in degenerate tin dioxide , 1990 .

[21]  F. Guinea,et al.  Damping pathways of mid-infrared plasmons in graphene nanostructures , 2013, Nature Photonics.

[22]  Gregory V Hartland,et al.  Optical studies of dynamics in noble metal nanostructures. , 2011, Chemical reviews.

[23]  E. Carpene Ultrafast laser irradiation of metals: Beyond the two-temperature model , 2006 .

[24]  C. Granqvist,et al.  Band-gap widening in heavily Sn-dopedIn2O3 , 1984 .

[25]  Javier Aizpurua,et al.  All-optical control of a single plasmonic nanoantenna-ITO hybrid. , 2011, Nano letters.

[26]  Brian F. Donovan,et al.  Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. , 2015, Nature materials.

[27]  Evan L. Runnerstrom,et al.  Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. , 2011, Nano letters.

[28]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[29]  A Paul Alivisatos,et al.  Localized surface plasmon resonances arising from free carriers in doped quantum dots. , 2011, Nature materials.

[30]  G. Wurtz,et al.  Bulk plasmon-polaritons in hyperbolic nanorod metamaterial waveguides , 2015, Laser & photonics reviews.

[31]  Viktor A. Podolskiy,et al.  Transparent conductive oxides: Plasmonic materials for telecom wavelengths , 2011 .

[32]  Ulf Peschel,et al.  Nanoscale conducting oxide PlasMOStor. , 2014, Nano letters.

[33]  Sun,et al.  Femtosecond-tunable measurement of electron thermalization in gold. , 1994, Physical review. B, Condensed matter.

[34]  C. Granqvist,et al.  Transparent and conducting ITO films: new developments and applications , 2002 .

[35]  Gennady Shvets,et al.  Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems , 2011 .

[36]  J. Ketterson,et al.  Infrared plasmonics with indium-tin-oxide nanorod arrays. , 2011, ACS nano.

[37]  Robert P. H. Chang,et al.  Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays , 2014 .

[38]  G. Wiederrecht,et al.  Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. , 2015, Nature nanotechnology.

[39]  Anne-Laure Baudrion,et al.  Transient Optical Response of a Single Gold Nanoantenna: The Role of Plasmon Detuning , 2015 .

[40]  E. Kane,et al.  Band structure of indium antimonide , 1957 .

[41]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[42]  Stylianos Tzortzakis,et al.  Nonequilibrium electron dynamics in noble metals , 2000 .

[43]  Qihuang Gong,et al.  Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range , 2013, Scientific Reports.

[44]  Morrell H. Cohen,et al.  Energy bands in the bismuth structure. I. A nonellipsoidal model for electrons in Bi , 1961 .

[45]  O. G. Memis,et al.  Integrated all-optical infrared switchable plasmonic quantum cascade laser. , 2012, Nano letters.

[46]  Fritz Keilmann,et al.  Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy. , 2014, Nano letters.

[47]  Otto L. Muskens,et al.  Extreme Subwavelength Metal Oxide Direct and Complementary Metamaterials , 2015 .

[48]  Wei Li,et al.  Ultrafast all-optical graphene modulator. , 2014, Nano letters.

[49]  Dennis Nordlund,et al.  Influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals. , 2014, Journal of the American Chemical Society.

[50]  Bernd Rech,et al.  Optical modeling of free electron behavior in highly doped ZnO films , 2009 .