Potential energy functions.

[1]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[2]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[3]  Terry R. Stouch,et al.  Effects of Switching Functions on the Behavior of Liquid Water in Molecular Dynamics Simulations , 1994 .

[4]  Kenneth M. Merz,et al.  A force field for monosaccharides and (1 → 4) linked polysaccharides , 1994, J. Comput. Chem..

[5]  N. L. Allinger,et al.  Molecular mechanics calculations (MM3) on alkyl iodides , 1994 .

[6]  J. Rustad,et al.  Structural Criteria for the Rational Design of Selective Ligands:Extension of the MM3 Force Field to Aliphatic Ether Complexes of the Alkali and Alkaline Earth Cations , 1994 .

[7]  C. Alemán,et al.  PAPQMD/AM1 Parametrization of the bonded term of aromatic biomolecules , 1994 .

[8]  B. Berne,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994, chem-ph/9406002.

[9]  D. Weaver,et al.  Computational conformational analysis of neural membrane lipids:development of force field parameters for phospholipids using semi-empirical molecular orbital calculations , 1994 .

[10]  Alfred D. French,et al.  Analysis of the ring‐form tautomers of psicose with MM3 (92) , 1994, J. Comput. Chem..

[11]  R. Field,et al.  First observation and electronic structure of the diatomic platinum nitride molecule , 1994 .

[12]  Sheng-Bai Zhu,et al.  Sensitivity Analysis of a Polarizable Water Model , 1994 .

[13]  Berta Fernández,et al.  Parametrization of a force field for studying some beta‐lactams , 1994, J. Comput. Chem..

[14]  Dan N. Bernardo,et al.  An Anisotropic Polarizable Water Model: Incorporation of All-Atom Polarizabilities into Molecular Mechanics Force Fields , 1994 .

[15]  Malcolm E. Davis,et al.  The inducible multipole solvation model: A new model for solvation effects on solute electrostatics , 1994 .

[16]  Alexander Tropsha,et al.  Molecular simulation of alkyl boronic acids: Molecular mechanics and solvation free energy calculations , 1994, J. Comput. Chem..

[17]  A. Cerezo,et al.  Use of a general purpose force-field (MM2) for the conformational analysis of the disaccharide α-D-galactopyranosyl-(1→3)-β-D-galactopyranose , 1994 .

[18]  W. Welsh,et al.  Molecular mechanics studies of model iron(III) transferrin complexes in vacuo and in aqueous solution , 1994 .

[19]  David E. Smith,et al.  Computer simulations of NaCl association in polarizable water , 1994 .

[20]  Ming-Jing Hwang,et al.  Derivation of Class II Force Fields. 2. Derivation and Characterization of a Class II Force Field, CFF93, for the Alkyl Functional Group and Alkane Molecules , 1994 .

[21]  Norman L. Allinger,et al.  Force field calculations (MM3) on glyoxal, quinones, and related compounds , 1994, J. Comput. Chem..

[22]  K. Sharp,et al.  Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models , 1994 .

[23]  Ming-Jing Hwang,et al.  Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules , 1994, J. Comput. Chem..

[24]  A. Yagola,et al.  Joint treatment of ab initio and experimental data in molecular force field calculations with Tikhonov’s method of regularization , 1994 .

[25]  P. Åstrand,et al.  NONEMPIRICAL INTERMOLECULAR POTENTIALS FOR UREA-WATER SYSTEMS , 1994 .

[26]  Kim Palmo,et al.  Spectroscopically determined force fields for macromolecules; 1 -- N-alkane chains , 1993 .

[27]  D. Y. Yoon,et al.  Force field for simulations of 1,2-dimethoxyethane and poly(oxyethylene) based upon ab initio electronic structure calculations on model molecules , 1993 .

[28]  N. L. Allinger,et al.  Molecular Mechanics (MM3). Calculations of Furan, Vinyl Ethers, and Related Compounds , 1993 .

[29]  Norman L. Allinger,et al.  Molecular Mechanics (MM3). Calculations on Nitrogen-Containing Aromatic Heterocycles , 1993 .

[30]  Philippe Derreumaux,et al.  Influence of the spectroscopic potential energy function spasiba on molecular dynamics of proteins: comparison with the amber potential , 1993 .

[31]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[32]  P. Kollman,et al.  Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation , 1993 .

[33]  W. Goddard,et al.  Polyoxymethylene: The Hessian biased force field for molecular dynamics simulations , 1993 .

[34]  Terry R. Stouch,et al.  Characterization of force fields for lipid molecules: Applications to crystal structures , 1993, J. Comput. Chem..

[35]  S. Rychnovsky,et al.  Chair and twist-boat conformations of 1,3-dioxanes: limitations of molecular mechanics force fields , 1993 .

[36]  P. Kollman,et al.  Protein structure prediction with a combined solvation free energy-molecular mechanics force field , 1993 .

[37]  A. Rappé,et al.  Application of a universal force field to metal complexes , 1993 .

[38]  P. Grootenhuis,et al.  A CHARMm Based Force Field for Carbohydrates Using the CHEAT Approach: Carbohydrate Hydroxyl Groups Represented by Extended Atoms , 1993 .

[39]  Yi Fan,et al.  Molecular mechanics calculations (MM3) on sulfones , 1993, J. Comput. Chem..

[40]  György G. Ferenczy,et al.  Transferable net atomic charges from a distributed multipole analysis for the description of electrostatic properties: a case study of saturated hydrocarbons , 1993 .

[41]  P. Derreumaux,et al.  The structures and vibrational frequencies of a series of alkanes using the SPASIBA force field , 1993 .

[42]  Clark R. Landis,et al.  Valence Bond Concepts Applied to the Molecular Mechanics Description of Molecular Shapes. 2. Applications to Hypervalent Molecules of the P-Block , 1993 .

[43]  George R. Famini,et al.  Conformational dependence of the electrostatic potential‐derived charges of dopamine: Ramifications in molecular mechanics force field calculations in the gas phase and in aqueous solution , 1993, J. Comput. Chem..

[44]  L. D. Sparks,et al.  Metal dependence of the nonplanar distortion of octaalkyltetraphenylporphyrins , 1993 .

[45]  Terry R. Stouch,et al.  Conformational dependence of electrostatic potential derived charges of a lipid headgroup: Glycerylphosphorylcholine , 1992 .

[46]  J. Dillen PEFF: A program for the development of empirical force fields , 1992 .

[47]  William A. Goddard,et al.  Hessian‐biased force fields from combining theory and experiment , 1989 .

[48]  A. Hagler,et al.  Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[49]  A. J. Hopfinger,et al.  Molecular mechanics force‐field parameterization procedures , 1984 .

[50]  S. Engelsen,et al.  THE CONSISTENT FORCE FIELD. II: AN OPTIMIZED SET OF POTENTIAL ENERGY FUNCTIONS FOR THE ALKANES , 1994 .

[51]  Adri C. T. van Duin,et al.  Delft molecular mechanics: a new approach to hydrocarbon force fields. Inclusion of a geometry-dependent charge calculation , 1994 .

[52]  Norman L. Allinger,et al.  Molecular mechanics parameters , 1994 .