B-Splines with Arbitrary Connection Matrices
暂无分享,去创建一个
[1] W. Boehm. Inserting New Knots into B-spline Curves , 1980 .
[2] R. A Zalik. On transforming a Tchebycheff system into a complete Tchebycheff system , 1977 .
[3] G. Farin. Algorithms for rational Bézier curves , 1983 .
[4] Marie-Laurence Mazure,et al. Blossoming: A Geometrical Approach , 1999 .
[5] T. Goodman. Properties of ?-splines , 1985 .
[6] Nira Dyn,et al. Piecewise polynomial spaces and geometric continuity of curves , 1989 .
[7] Helmut Pottmann,et al. The geometry of Tchebycheffian splines , 1993, Comput. Aided Geom. Des..
[8] Wolfgang Boehm. Curvature continuous curves and surfaces , 1986 .
[9] H.-P. Seidel. New algorithms and techniques for computing with geometrically continuous spline curves of arbitrary degree , 1992 .
[10] Phillip J. Barry,et al. de Boor-Fix dual functionals and algorithms for Tchebycheffian B-spline curves , 1996 .
[11] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[12] Nira Dyn,et al. ON LOCALLY SUPPORTED BASIS FUNCTIONS FOR THE REPRESENTATION OF GEOMETRICALLY CONTINUOUS CURVES , 1987 .
[13] J. C. F. Haase. Zur Theorie der ebenen Curvennter Ordnung mit $$\frac{{(n - 1)(n - 2)}}{2}$$ Doppel- und Rückkehrpunkten , 1870 .
[14] Wolfgang Böhm,et al. On de Casteljau's algorithm , 1999, Comput. Aided Geom. Des..
[15] Wendelin L. F. Degen,et al. Some remarks on Bézier curves , 1988, Comput. Aided Geom. Des..
[16] W. J. Studden,et al. Tchebycheff Systems: With Applications in Analysis and Statistics. , 1967 .
[17] Ewald Quak. Mathematical Aspects of Geometric Modeling (Charles A. Micchelli) , 1995, SIAM Rev..