B-Splines with Arbitrary Connection Matrices

AbstractWe consider a space of Chebyshev splines whose left and right derivatives satisfy linear constraints that are given by arbitrary nonsingular connection matrices. We show that for almost all knot sequences such spline spaces have basis functions whose support is equal to the support of the ordinary B-splines with the same knots. Consequently, there are knot insertion and evaluation algorithms analogous to de Boor’s algorithm for ordinary splines.

[1]  W. Boehm Inserting New Knots into B-spline Curves , 1980 .

[2]  R. A Zalik On transforming a Tchebycheff system into a complete Tchebycheff system , 1977 .

[3]  G. Farin Algorithms for rational Bézier curves , 1983 .

[4]  Marie-Laurence Mazure,et al.  Blossoming: A Geometrical Approach , 1999 .

[5]  T. Goodman Properties of ?-splines , 1985 .

[6]  Nira Dyn,et al.  Piecewise polynomial spaces and geometric continuity of curves , 1989 .

[7]  Helmut Pottmann,et al.  The geometry of Tchebycheffian splines , 1993, Comput. Aided Geom. Des..

[8]  Wolfgang Boehm Curvature continuous curves and surfaces , 1986 .

[9]  H.-P. Seidel New algorithms and techniques for computing with geometrically continuous spline curves of arbitrary degree , 1992 .

[10]  Phillip J. Barry,et al.  de Boor-Fix dual functionals and algorithms for Tchebycheffian B-spline curves , 1996 .

[11]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[12]  Nira Dyn,et al.  ON LOCALLY SUPPORTED BASIS FUNCTIONS FOR THE REPRESENTATION OF GEOMETRICALLY CONTINUOUS CURVES , 1987 .

[13]  J. C. F. Haase Zur Theorie der ebenen Curvennter Ordnung mit $$\frac{{(n - 1)(n - 2)}}{2}$$ Doppel- und Rückkehrpunkten , 1870 .

[14]  Wolfgang Böhm,et al.  On de Casteljau's algorithm , 1999, Comput. Aided Geom. Des..

[15]  Wendelin L. F. Degen,et al.  Some remarks on Bézier curves , 1988, Comput. Aided Geom. Des..

[16]  W. J. Studden,et al.  Tchebycheff Systems: With Applications in Analysis and Statistics. , 1967 .

[17]  Ewald Quak Mathematical Aspects of Geometric Modeling (Charles A. Micchelli) , 1995, SIAM Rev..