A New Efficient Meta-Heuristic Optimization Algorithm Inspired by Wild Dog Packs

Although meta-heuristic optimization algorithms have been used to solve many optimization problems, they still suffer from two main difficulties: What are the best parameters for a particular problem? How do we escape from the local optima? In this paper, a new, efficient meta-heuristic optimization algorithm inspired by wild dog packs is proposed. The main idea involves using three self-competitive parameters that are similar to the smell strength. The parameters are used to control the movement of the alpha dogs and, consequently, the movement of the whole pack. The rest of the pack is used to explore the neighboring area of the alpha dog, while the hoo procedure is used to escape from the local optima. The suggested method is applied to several unimodal and multimodal benchmark problems and is compared to five modern meta-heuristic algorithms. The experimental results show that the new algorithm outperforms other peer algorithms.

[1]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[2]  Changhe Li,et al.  A Clustering Particle Swarm Optimizer for Locating and Tracking Multiple Optima in Dynamic Environments , 2010, IEEE Transactions on Evolutionary Computation.

[3]  Ajith Abraham,et al.  An Improved Harmony Search Algorithm with Differential Mutation Operator , 2009, Fundam. Informaticae.

[4]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[5]  Yin-Fu Huang,et al.  Self-adaptive harmony search algorithm for optimization , 2010, Expert Syst. Appl..

[6]  Jianzhong Zhou,et al.  A Self-Adaptive Particle Swarm Optimization Algorithm with Individual Coefficients Adjustment , 2007, 2007 International Conference on Computational Intelligence and Security (CIS 2007).

[7]  Zong Woo Geem,et al.  Harmony Search Optimization: Application to Pipe Network Design , 2002 .

[8]  Shiyuan Yang,et al.  Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm , 2007, Inf. Process. Lett..

[9]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[10]  Mahmoud Reza Pishvaie,et al.  Application of an improved harmony search algorithm in well placement optimization using streamline simulation , 2011 .

[11]  Zong Woo Geem,et al.  Optimal Scheduling of Multiple Dam System Using Harmony Search Algorithm , 2007, IWANN.

[12]  Mounir Ben Ghalia,et al.  Regrouping particle swarm optimization: A new global optimization algorithm with improved performance consistency across benchmarks , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[13]  S. Siva Sathya,et al.  A Survey of Bio inspired Optimization Algorithms , 2012 .

[14]  Patrick Siarry,et al.  A survey on optimization metaheuristics , 2013, Inf. Sci..

[15]  Neculai Andrei,et al.  An Unconstrained Optimization Test Functions Collection , 2008 .

[16]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[17]  Mahamed G. H. Omran,et al.  Global-best harmony search , 2008, Appl. Math. Comput..

[18]  Foreword and Editorial International Journal of Hybrid Information Technology , 2022 .

[19]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[20]  Xiaodong Li,et al.  Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology , 2010, IEEE Transactions on Evolutionary Computation.

[21]  S. P. Koh,et al.  Hybrid Artificial Immune System-Genetic Algorithm optimization based on mathematical test functions , 2010, 2010 IEEE Student Conference on Research and Development (SCOReD).

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  Zong Woo Geem,et al.  Application of Harmony Search to Vehicle Routing , 2005 .

[24]  S. Creel,et al.  Communal hunting and pack size in African wild dogs, Lycaon pictus , 1995, Animal Behaviour.

[25]  M. Fesanghary,et al.  Combined heat and power economic dispatch by harmony search algorithm , 2007 .

[26]  I. Gordon,et al.  Prey selection by African wild dogs ( Lycaon pictus ) in southern Zimbabwe , 2004 .

[27]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[28]  Zong Woo Geem,et al.  Recent Advances In Harmony Search Algorithm , 2010, Recent Advances In Harmony Search Algorithm.

[29]  S. O. Degertekin Improved harmony search algorithms for sizing optimization of truss structures , 2012 .

[30]  Z. Geem Music-Inspired Harmony Search Algorithm: Theory and Applications , 2009 .

[31]  Yang Tang,et al.  Feedback learning particle swarm optimization , 2011, Appl. Soft Comput..

[32]  Mohammed Azmi Al-Betar,et al.  A Harmony Search with Multi-pitch Adjusting Rate for the University Course Timetabling , 2010, Recent Advances In Harmony Search Algorithm.

[33]  Richard F. Hartl,et al.  A survey on pickup and delivery problems , 2008 .

[34]  Jianhua Wu,et al.  Novel global harmony search algorithm for unconstrained problems , 2010, Neurocomputing.

[35]  Mandava Rajeswari,et al.  The variants of the harmony search algorithm: an overview , 2011, Artificial Intelligence Review.

[36]  Hifza Afaq On the Solutions to the Travelling Salesman Problem using Nature Inspired Computing Techniques , 2011 .

[37]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[38]  Xinchao Zhao,et al.  A perturbed particle swarm algorithm for numerical optimization , 2010, Appl. Soft Comput..

[39]  Zhao Xinchao A perturbed particle swarm algorithm for numerical optimization , 2010 .

[40]  C. Fitzgibbon,et al.  Factors influencing the hunting success of an African wild dog pack , 1993, Animal Behaviour.

[41]  Jiangye Yuan,et al.  A modified particle swarm optimizer with dynamic adaptation , 2007, Appl. Math. Comput..

[42]  Kamran Zamanifar,et al.  Improvement of harmony search algorithm by using statistical analysis , 2011, Artificial Intelligence Review.

[43]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[44]  Reza Tavakkoli-Moghaddam,et al.  Electromagnetism-like mechanism and simulated annealing algorithms for flowshop scheduling problems minimizing the total weighted tardiness and makespan , 2010, Knowl. Based Syst..