Blind Selection of Representative Observations for Sensor Radar Networks

Sensor radar networks enable important new applications based on accurate localization. They rely on the quality of range measurements, which serve as observations for inferring a target location. In harsh propagation environments (e.g., indoors), such observations can be nonrepresentative of the target due to noise, multipath, clutter, and non-line-of-sight conditions leading to target misdetection, false-alarm events, and inaccurate localization. These conditions can be mitigated by selecting and processing a subset of representative observations. We introduce blind techniques for the selection of representative observations gathered by sensor radars operating in harsh environments. A methodology for the design and analysis of sensor radar networks is developed, taking into account the aforementioned impairments and observation selection. Results are obtained for noncoherent ultra-wideband sensor radars in a typical indoor environment (with obstructions, multipath, and clutter) to enable a clear understanding of how observation selection improves the localization accuracy.

[1]  E. Arias-de-Reyna,et al.  Indoor Localization With Range-Based Measurements and Little Prior Information , 2013, IEEE Sensors Journal.

[2]  M. Bolic,et al.  Novel Semi-Passive RFID System for Indoor Localization , 2013, IEEE Sensors Journal.

[3]  L.M. Kaplan,et al.  Local node selection for localization in a distributed sensor network , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[4]  Fauzia Ahmad,et al.  Noncoherent approach to through-the-wall radar localization , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[5]  Andrea Giorgetti,et al.  Time-of-Arrival Estimation Based on Information Theoretic Criteria , 2013, IEEE Transactions on Signal Processing.

[6]  Pau Closas,et al.  A Bayesian Approach to Multipath Mitigation in GNSS Receivers , 2009, IEEE Journal of Selected Topics in Signal Processing.

[7]  Pau Closas,et al.  A Statistical Multipath Detector for Antenna Array Based GNSS Receivers , 2011, IEEE Transactions on Wireless Communications.

[8]  Moe Z. Win,et al.  Fundamental Limits of Wideband Localization— Part II: Cooperative Networks , 2010, IEEE Transactions on Information Theory.

[9]  A.F. Molisch,et al.  MIMO systems with antenna selection , 2004, IEEE Microwave Magazine.

[10]  Mónica F. Bugallo,et al.  Improving Accuracy by Iterated Multiple Particle Filtering , 2012, IEEE Signal Processing Letters.

[11]  Jack M. Winters,et al.  Optimum Combining in Digital Mobile Radio with Cochannel Interference , 1984, IEEE Journal on Selected Areas in Communications.

[12]  Moe Z. Win,et al.  Ranging With Ultrawide Bandwidth Signals in Multipath Environments , 2009, Proceedings of the IEEE.

[13]  Richard K. Martin,et al.  Bandwidth Efficient Cooperative TDOA Computation for Multicarrier Signals of Opportunity , 2009, IEEE Transactions on Signal Processing.

[14]  Moe Z. Win,et al.  NLOS identification and mitigation for localization based on UWB experimental data , 2010, IEEE Journal on Selected Areas in Communications.

[15]  R.J. Fontana,et al.  Ultra-wideband precision asset location system , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[16]  N. Balakrishnan,et al.  Continuous Bivariate Distributions , 2009 .

[17]  D. G. Brennan Linear Diversity Combining Techniques , 1959, Proceedings of the IRE.

[18]  Moe Z. Win,et al.  Optimized simple bounds for diversity systems , 2009, IEEE Transactions on Communications.

[19]  L.M. Kaplan,et al.  Global node selection for localization in a distributed sensor network , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[20]  Andreas F. Molisch,et al.  MIMO systems with antenna selection - an overview , 2003, Radio and Wireless Conference, 2003. RAWCON '03. Proceedings.

[21]  L.M.H. Ulander,et al.  Bistatic ultra-wideband SAR for imaging of ground targets under foliage , 2005, IEEE International Radar Conference, 2005..

[22]  Moe Z. Win,et al.  Fundamental Limits of Wideband Localization— Part I: A General Framework , 2010, IEEE Transactions on Information Theory.

[23]  Maria-Gabriella Di Benedetto,et al.  UWB ranging accuracy in high- and low-data-rate applications , 2006, IEEE Transactions on Microwave Theory and Techniques.

[24]  Moe Z. Win,et al.  Sensor Radar Networks for Indoor Tracking , 2014, IEEE Wireless Communications Letters.

[25]  Moe Z. Win,et al.  Position Error Bound for UWB Localization in Dense Cluttered Environments , 2006, 2006 IEEE International Conference on Communications.

[26]  M. Barnes,et al.  A moving target detection filter for an ultra-wideband radar , 2003, Proceedings of the 2003 IEEE Radar Conference (Cat. No. 03CH37474).

[27]  Moe Z. Win,et al.  Threshold-Based Time-of-Arrival Estimators in UWB Dense Multipath Channels , 2006, 2006 IEEE International Conference on Communications.

[28]  Moe Z. Win,et al.  On the SNR penalty of MPSK with hybrid selection/maximal ratio combining over i.i.d. Rayleigh fading channels , 2003, IEEE Trans. Commun..

[29]  Asit P. Basu,et al.  Aspects of Statistical Inference , 1996, Technometrics.

[30]  Donald E. Knuth,et al.  The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .

[31]  A. Rabbachin,et al.  A low-complexity noncoherent IR-UWB transceiver architecture with TOA estimation , 2006, IEEE Transactions on Microwave Theory and Techniques.

[32]  P. Millot,et al.  Through the wall MIMO radar detection with stepped frequency waveforms , 2010, The 7th European Radar Conference.

[33]  Pierfrancesco Lombardo,et al.  WiFi-Based Passive Bistatic Radar: Data Processing Schemes and Experimental Results , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[34]  Moe Z. Win,et al.  A Mathematical Model for Wideband Ranging , 2015, IEEE Journal of Selected Topics in Signal Processing.

[35]  H. Vincent Poor,et al.  Sensor Selection in Distributed Multiple-Radar Architectures for Localization: A Knapsack Problem Formulation , 2012, IEEE Transactions on Signal Processing.

[36]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[37]  F. Colone,et al.  Potentialities and challenges of WiFi-based passive radar , 2012, IEEE Aerospace and Electronic Systems Magazine.

[38]  Andrea Conti,et al.  UWB passive navigation in indoor environments , 2011, ISABEL '11.

[39]  M. Sato,et al.  Bistatic UWB Radar System , 2007, 2007 IEEE International Conference on Ultra-Wideband.

[40]  Moe Z. Win,et al.  Ultrawide Bandwidth RFID: The Next Generation? , 2010, Proceedings of the IEEE.

[41]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[42]  Xianbin Wang,et al.  Robust switching blind equalizer for wireless cognitive receivers , 2008, IEEE Transactions on Wireless Communications.

[43]  Kaveh Pahlavan,et al.  Modeling of the TOA-based distance measurement error using UWB indoor radio measurements , 2006, IEEE Communications Letters.

[44]  E. Del Re,et al.  Multi-level environment identification method for impulsive radio systems , 2011, 2011 IEEE International Conference on Ultra-Wideband (ICUWB).

[45]  Christian Pichot,et al.  Through-the-wall radar using multiple UWB antennas , 2007 .

[46]  P.K. Dutta,et al.  Towards radar-enabled sensor networks , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[47]  Moe Z. Win,et al.  Network localization and navigation via cooperation , 2011, IEEE Communications Magazine.

[48]  Moe Z. Win,et al.  Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications , 2000, IEEE Trans. Commun..

[49]  Moe Z. Win,et al.  Network Navigation: Theory and Interpretation , 2012, IEEE Journal on Selected Areas in Communications.

[50]  James Aspnes,et al.  On the Computational Complexity of Sensor Network Localization , 2004, ALGOSENSORS.

[51]  I. Oppermann,et al.  Performance of UWB position estimation based on time-of-arrival measurements , 2004, 2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies. Joint UWBST & IWUWBS 2004 (IEEE Cat. No.04EX812).

[52]  G.B. Giannakis,et al.  Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks , 2005, IEEE Signal Processing Magazine.

[53]  Georgios B. Giannakis,et al.  Ultra-wideband communications: an idea whose time has come , 2004, IEEE Signal Processing Magazine.

[54]  Chia-Chin Chong,et al.  A Comprehensive Standardized Model for Ultrawideband Propagation Channels , 2006, IEEE Transactions on Antennas and Propagation.

[55]  Douglas A. Wolfe,et al.  Nonparametric Statistical Methods , 1973 .

[56]  A. F. Molisch,et al.  Propagation Parameter Estimation, Modeling and Measurements for Ultrawideband MIMO Radar , 2011, IEEE Transactions on Antennas and Propagation.

[57]  Moe Z. Win,et al.  On the accuracy of localization systems using wideband antenna arrays , 2010, IEEE Transactions on Communications.

[58]  Andrea Giorgetti,et al.  Localization Capability of Cooperative Anti-Intruder Radar Systems , 2008, EURASIP J. Adv. Signal Process..

[59]  Merill I. Skolnik,et al.  An Analysis of Bistatic Radar , 1961, IRE Transactions on Aerospace and Navigational Electronics.

[60]  Moe Z. Win,et al.  Network Experimentation for Cooperative Localization , 2012, IEEE Journal on Selected Areas in Communications.

[61]  Moe Z. Win,et al.  Impulse radio: how it works , 1998, IEEE Communications Letters.

[62]  H. Vincent Poor,et al.  Position Estimation via Ultra-Wide-Band Signals , 2008, Proceedings of the IEEE.