Disruption of IRS-2 causes type 2 diabetes in mice

[1]  S. Bonner-Weir,et al.  Apoptosis participates in the remodeling of the endocrine pancreas in the neonatal rat. , 1997, Endocrinology.

[2]  C. Kahn,et al.  Differential signaling by insulin receptor substrate 1 (IRS-1) and IRS-2 in IRS-1-deficient cells , 1997, Molecular and cellular biology.

[3]  C. Kahn,et al.  Development of a Novel Polygenic Model of NIDDM in Mice Heterozygous for IR and IRS-1 Null Alleles , 1997, Cell.

[4]  N. Copeland,et al.  The IRS-2 gene on murine chromosome 8 encodes a unique signaling adapter for insulin and cytokine action. , 1997, Molecular endocrinology.

[5]  J. Flier,et al.  Insulin Regulation of Phosphoenolpyruvate Carboxykinase Gene Expression Does Not Require Activation of the Ras/Mitogen-activated Protein Kinase Signaling Pathway (*) , 1996, The Journal of Biological Chemistry.

[6]  M. White,et al.  Insulin signal transduction and the IRS proteins. , 1996, Annual review of pharmacology and toxicology.

[7]  C. Kahn,et al.  4PS/Insulin Receptor Substrate (IRS)-2 Is the Alternative Substrate of the Insulin Receptor in IRS-1-deficient Mice (*) , 1995, The Journal of Biological Chemistry.

[8]  William Arbuthnot Sir Lane,et al.  Role of IRS-2 in insulin and cytokine signalling , 1995, Nature.

[9]  M. White,et al.  The structure and function of p55PIK reveal a new regulatory subunit for phosphatidylinositol 3-kinase , 1995, Molecular and cellular biology.

[10]  Yiling Lu,et al.  Phosphatidylinositol 3‐kinase activity is not essential for CD28 costimulatory activity in Jurkat T cells: studies with a selective inhibitor, wortmannin , 1995, European journal of immunology.

[11]  K. Siddle,et al.  Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked by wortmannin and rapamycin in 3T3-L1 adipocytes: evidence for the involvement of phosphoinositide 3-kinase and p70 ribosomal protein-S6 kinase. , 1995, The Biochemical journal.

[12]  G. Shulman,et al.  Overexpression of Glut4 protein in muscle increases basal and insulin-stimulated whole body glucose disposal in conscious mice. , 1995, The Journal of clinical investigation.

[13]  T. Yagi,et al.  Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1 , 1994, Nature.

[14]  C. Kahn,et al.  Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene , 1994, Nature.

[15]  J. Blenis,et al.  Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation , 1994, Molecular and cellular biology.

[16]  S. Bonner-Weir,et al.  Transplanted beta cell response to increased metabolic demand. Changes in beta cell replication and mass. , 1994, The Journal of clinical investigation.

[17]  T. Okada,et al.  Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. , 1994, The Journal of biological chemistry.

[18]  M. White,et al.  Association of IRS-1 with the insulin receptor and the phosphatidylinositol 3'-kinase. Formation of binary and ternary signaling complexes in intact cells. , 1993, The Journal of biological chemistry.

[19]  Alexandra L. Joyner,et al.  Gene targeting: a practical approach. , 1993 .

[20]  R. DeFronzo,et al.  Pathogenesis of NIDDM: A Balanced Overview , 1992, Diabetes Care.

[21]  M. Löhr,et al.  Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. , 1985, Survey and synthesis of pathology research.

[22]  E. Joslin,et al.  Joslin's Diabetes Mellitus , 1971 .