Structural mapping and tuning of mixed halide ions in amorphous sulfides for fast Li-ion conduction and high deformability

A glassy sulfide with fast Li-ion conduction and high deformability was developed and analyzed by combinatorial atomic-level approaches.

[1]  Felix H. Richter,et al.  Influence of Crystallinity of Lithium Thiophosphate Solid Electrolytes on the Performance of Solid‐State Batteries , 2021, Advanced Energy Materials.

[2]  Y. Shao-horn,et al.  Phonon–Ion Interactions: Designing Ion Mobility Based on Lattice Dynamics , 2020, Advanced Energy Materials.

[3]  Yang‐Kook Sun Promising All-Solid-State Batteries for Future Electric Vehicles , 2020, ACS Energy Letters.

[4]  J. Mauro,et al.  Emerging Role of Non-crystalline Electrolytes in Solid-State Battery Research , 2020, Frontiers in Energy Research.

[5]  Erik A. Wu,et al.  Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. , 2020, Chemical reviews.

[6]  Zhizhen Zhang,et al.  Targeting Superionic Conductivity by Turning on Anion Rotation at Room Temperature in Fast Ion Conductors , 2020, Matter.

[7]  Wei-Hua Wang,et al.  Two-way tuning of structural order in metallic glasses , 2020, Nature Communications.

[8]  Ji Woong Yu,et al.  Active microrheology of a bulk metallic glass , 2020, Science Advances.

[9]  E. Levänen,et al.  Highly ductile amorphous oxide at room temperature and high strain rate , 2019, Science.

[10]  Zhenming Xu,et al.  Anion charge-lattice volume dependent Li ion migration in compounds with the face-centered cubic anion frameworks , 2019, 1910.11545.

[11]  E. Reed,et al.  Quantifying the Search for Solid Li-Ion Electrolyte Materials by Anion: A Data-Driven Perspective , 2019, The Journal of Physical Chemistry C.

[12]  Hun‐Gi Jung,et al.  Atomistic Assessments of Lithium-Ion Conduction Behavior in Glass-Ceramic Lithium Thiophosphates. , 2019, ACS applied materials & interfaces.

[13]  Hyoungchul Kim,et al.  Thermally Induced S-Sublattice Transition of Li3PS4 for Fast Lithium-Ion Conduction. , 2018, The journal of physical chemistry letters.

[14]  Francisco Javier Quintero Cortes,et al.  Avoiding Fracture in a Conversion Battery Material through Reaction with Larger Ions , 2018, Joule.

[15]  A. Hayashi,et al.  Mechanical Properties of Li2S–P2S5 Glasses with Lithium Halides and Application in All-Solid-State Batteries , 2018 .

[16]  Hun‐Gi Jung,et al.  Configuring PSx tetrahedral clusters in Li-excess Li7P3S11 solid electrolyte , 2018 .

[17]  W. Richards,et al.  Synthesis and Electrochemical Property of I-4 Type Li1+2xZn1-XPS4 Solid Electrolyte , 2017 .

[18]  Hideo Hosono,et al.  Transparent amorphous oxide semiconductors for organic electronics: Application to inverted OLEDs , 2016, Proceedings of the National Academy of Sciences.

[19]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[20]  V. Prakapenka,et al.  DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration , 2015 .

[21]  Zhong-hong Jiang,et al.  The structure of glass: A phase equilibrium diagram approach , 2014 .

[22]  A. Hayashi,et al.  Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery , 2013, Scientific Reports.

[23]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[24]  A. Hayashi,et al.  Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries , 2012 .

[25]  M. Edén NMR studies of oxide-based glasses , 2012 .

[26]  G. Tricot,et al.  A Comparative Overview of Glass-Ceramic Characterization by MAS-NMR and XRD , 2011 .

[27]  Tanguy Rouxel,et al.  Elastic Properties and Short-to Medium-Range Order in Glasses , 2007 .

[28]  S. Sen,et al.  Inorganic glasses, glass-forming liquids and amorphizing solids , 2007 .

[29]  M. Grimsditch,et al.  Glass Formation at the Limit of Insufficient Network Formers , 2004, Science.

[30]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[31]  M. Jansen Volume Effect or Paddle‐Wheel Mechanism—Fast Alkali‐Metal Ionic Conduction in Solids with Rotationally Disordered Complex Anions , 1991 .

[32]  R. L. McGreevy,et al.  Reverse Monte Carlo Simulation: A New Technique for the Determination of Disordered Structures , 1988 .

[33]  G. Robert,et al.  Superionic conduction in Li2S - P2S5 - LiI - glasses , 1981 .

[34]  J. Souquet Ionic Transport in Amorphous Solid Electrolytes , 1981 .

[35]  Z. Deng,et al.  Elastic Properties of Alkali Superionic Conductor Electrolytes from First Principles Calculations , 2016 .

[36]  Akihiko Hirata,et al.  Direct observation of local atomic order in a metallic glass. , 2011, Nature materials.