Structure maps for A(I)4A(II)6(BO4)6X2 apatite compounds via data mining.

This paper describes a method to identify key crystallographic parameters that can serve as strong classifiers of crystal chemistries and hence define new structure maps. The selection of this pair of key parameters from a large set of potential classifiers is accomplished through a linear data-dimensionality reduction method. A multivariate data set of known A(I)(4)A(II)(6)(BO(4))(6)X(2) apatites is used as the basis for the study where each A(I)(4)A(II)(6)(BO(4))(6)X(2) compound is represented as a 29-dimensional vector, where the vector components are discrete scalar descriptors of electronic and crystal structure attributes. A new structure map, defined using the two distortion angles α(AII) (rotation angle of A(II)-A(II)-A(II) triangular units) and ψ(AIz = 0)(AI-O1) (angle the A(I)-O1 bond makes with the c axis when z = 0 for the A(I) site), is shown to classify apatite crystal chemistries based on site occupancy on the A, B and X sites. The classification is accomplished using a K-means clustering analysis.

[1]  Katsuyuki Matsunaga,et al.  Theoretical trend of ion exchange ability with divalent cations in hydroxyapatite , 2008 .

[2]  Jean Kim,et al.  Apatite - An Adaptive Framework Structure , 2005 .

[3]  D. Pettifor,et al.  The structures of binary compounds. I. Phenomenological structure maps , 1986 .

[4]  Krishna Rajan,et al.  Invited review: Data mining and informatics for crystal chemistry: establishing measurement techniques for mapping structure–property relationships , 2009 .

[5]  Alex Zunger,et al.  Systematization of the stable crystal structure of all AB-type binary compounds: A pseudopotential orbital-radii approach , 1980 .

[6]  Krishna Rajan,et al.  Tracking chemical processing pathways in combinatorial polymer libraries via data mining. , 2010, Journal of combinatorial chemistry.

[7]  J. Elliott,et al.  Structure and chemistry of the apatites and other calcium orthophosphates , 1994 .

[8]  W. B. Pearson,et al.  On the crystal chemistry of normal valence compounds , 1959 .

[9]  H. Jenkins,et al.  Lattice energies of apatites and the estimation of ΔHf°(PO43-, g) , 2004 .

[10]  Anil K. Jain Data clustering: 50 years beyond K-means , 2010, Pattern Recognit. Lett..

[11]  L. Karanović,et al.  Sr, Ba and Cd arsenates with the apatite-type structure. , 2008, Acta crystallographica. Section C, Crystal structure communications.

[12]  J. Hauck,et al.  Structure maps for crystal engineering , 2002 .

[13]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[14]  Krishna Rajan,et al.  Virtual Screening and QSAR Formulations for Crystal Chemistry , 2005 .

[15]  Krishna Rajan,et al.  Electronic structure prediction via data‐mining the empirical pseudopotential method , 2010 .

[16]  Markus Ringnér,et al.  What is principal component analysis? , 2008, Nature Biotechnology.

[17]  Robert Tibshirani,et al.  Estimating the number of clusters in a data set via the gap statistic , 2000 .

[18]  Phillips,et al.  Global multinary structural chemistry of stable quasicrystals, high-TC ferroelectrics, and high-Tc superconductors. , 1992, Physical review. B, Condensed matter.

[19]  B. Harbrecht,et al.  Combining the Structure Controlling Factors for Metal‐rich Compounds to a Structure Map , 2000 .

[20]  John M. Hughes,et al.  The Crystal Structure of Apatite, Ca5(PO4)3(F,OH,Cl) , 2002 .

[21]  K. Crowley,et al.  Structural variations in natural F, OH, and Cl apatites , 1989 .

[22]  Radislav A. Potyrailo,et al.  Combinatorial and High-Throughput Discovery and Optimization of Catalysts and Materials , 2006 .

[23]  F. A. Hummel,et al.  Crystal chemistry and color in apatites containing cobalt, nickel, and rare-earth ions , 1970 .

[24]  Timothy J. White,et al.  A taxonomy of apatite frameworks for the crystal chemical design of fuel cell electrolytes , 2008 .

[25]  Krishna Rajan,et al.  Extracting information from the molten salt database , 2006 .

[26]  S. Sugiyama APPROACH USING APATITE TO STUDIES ON ENERGY AND ENVIRONMENT , 2007 .

[27]  P. Villars,et al.  Three-dimensional structural stability diagrams for 648 binary AB3 and 389 binary A3B5 intermetallic compounds: III , 1984 .

[28]  T. White,et al.  Geometrical parameterization of the crystal chemistry of P6(3)/m apatites: comparison with experimental data and ab initio results. , 2005, Acta crystallographica. Section B, Structural science.

[29]  Richard J Morris Statistical pattern recognition for macromolecular crystallographers. , 2004, Acta crystallographica. Section D, Biological crystallography.

[30]  Peter Murray-Rust,et al.  Computer retrieval and analysis of molecular geometry. III. Geometry of the β-1'-aminofuranoside fragment , 1978 .

[31]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[32]  Krishna Rajan,et al.  Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  Na Li,et al.  Structural stability and formability of ABO3-type perovskite compounds. , 2007, Acta crystallographica. Section B, Structural science.

[34]  Krishna Rajan,et al.  Principal component analysis on properties of binary and ternary hydrides and a comparison of metal versus metal hydride properties , 2009 .

[35]  I. Jolliffe Principal Component Analysis , 2002 .

[36]  T. White,et al.  Model Apatite Systems for the Stabilization of Toxic Metals: II, Cation and Metalloid Substitutions in Chlorapatites , 2005 .

[37]  H. Bürgi Structure Correlation and Chemistry , 1998 .

[38]  T. White,et al.  Structural derivation and crystal chemistry of apatites. , 2003, Acta crystallographica. Section B, Structural science.

[39]  Xionggang Lu,et al.  Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. , 2008, Acta crystallographica. Section B, Structural science.

[40]  T. White,et al.  Ab initio constrained crystal-chemical Rietveld refinement of Ca10(VxP1-xO4)6F2 apatites. , 2007, Acta crystallographica. Section B, Structural science.