Scaled opposite-spin second order Møller-Plesset correlation energy: an economical electronic structure method.

A simplified approach to treating the electron correlation energy is suggested in which only the alpha-beta component of the second order Møller-Plesset energy is evaluated, and then scaled by an empirical factor which is suggested to be 1.3. This scaled opposite-spin second order energy (SOS-MP2), where MP2 is Møller-Plesset theory, yields results for relative energies and derivative properties that are statistically improved over the conventional MP2 method. Furthermore, the SOS-MP2 energy can be evaluated without the fifth order computational steps associated with MP2 theory, even without exploiting any spatial locality. A fourth order algorithm is given for evaluating the opposite spin MP2 energy using auxiliary basis expansions, and a Laplace approach, and timing comparisons are given.

[1]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[2]  Mark S. Gordon,et al.  Scaling all correlation energy in perturbation theory calculations of bond energies and barrier heights , 1986 .

[3]  M. Head‐Gordon,et al.  What is the nature of the long bond in the TCNE22−π-dimer? , 2004 .

[4]  Georg Jansen,et al.  Intermolecular dispersion energies from time-dependent density functional theory , 2003 .

[5]  Martin W. Feyereisen,et al.  Use of approximate integrals in ab initio theory. An application in MP2 energy calculations , 1993 .

[6]  Donald G. Truhlar,et al.  Optimized Parameters for Scaling Correlation Energy , 1999 .

[7]  P. Hyldgaard,et al.  Van der Waals density functional for layered structures. , 2003, Physical review letters.

[8]  Benny G. Johnson,et al.  A density functional study of the simplest hydrogen abstraction reaction. Effect of self-interaction correction , 1994 .

[9]  Frederick R. Manby,et al.  Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations , 2003 .

[10]  Xin Xu,et al.  From The Cover: The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Martin Head-Gordon,et al.  Closely approximating second-order Mo/ller–Plesset perturbation theory with a local triatomics in molecules model , 2000 .

[12]  Jürgen Gauss,et al.  The prediction of molecular equilibrium structures by the standard electronic wave functions , 1997 .

[13]  Yixiang Cao,et al.  Correlated ab Initio Electronic Structure Calculations for Large Molecules , 1999 .

[14]  S. Grimme Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies , 2003 .

[15]  Donald G. Truhlar,et al.  Robust and Affordable Multicoefficient Methods for Thermochemistry and Thermochemical Kinetics: The MCCM/3 Suite and SAC/3 , 2003 .

[16]  Qin Wu,et al.  Empirical correction to density functional theory for van der Waals interactions , 2002 .

[17]  F. Weigend,et al.  Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations , 2002 .

[18]  Holger Patzelt,et al.  RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .

[19]  Donald G. Truhlar,et al.  Adiabatic connection for kinetics , 2000 .

[20]  Peter Pulay,et al.  CAN (SEMI) LOCAL DENSITY FUNCTIONAL THEORY ACCOUNT FOR THE LONDON DISPERSION FORCES , 1994 .

[21]  Jan Almlöf,et al.  Elimination of energy denominators in Møller—Plesset perturbation theory by a Laplace transform approach , 1991 .

[22]  W. Klopper Highly accurate coupled-cluster singlet and triplet pair energies from explicitly correlated calculations in comparison with extrapolation techniques , 2001 .

[23]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[24]  F. Weigend,et al.  RI-MP2: first derivatives and global consistency , 1997 .

[25]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[26]  Robert G. Parr,et al.  Density Functional Theory of Electronic Structure , 1996 .

[27]  T. Dunning,et al.  Benchmark calculations with correlated molecular wavefunctions. XIII. Potential energy curves for He2, Ne2 and Ar2 using correlation consistent basis sets through augmented sextuple zeta , 1999 .

[28]  Stefan Grimme,et al.  Improved third‐order Møller–Plesset perturbation theory , 2003, J. Comput. Chem..

[29]  Philippe Y. Ayala,et al.  Atomic orbital Laplace-transformed second-order Møller–Plesset theory for periodic systems , 2001 .

[30]  Peter Pulay,et al.  Efficient calculation of canonical MP2 energies , 2001 .

[31]  P Pulay,et al.  Local Treatment of Electron Correlation , 1993 .

[32]  Georg Hetzer,et al.  Low-order scaling local electron correlation methods. I. Linear scaling local MP2 , 1999 .

[33]  Stefan Grimme,et al.  Systematic quantum chemical study of DNA‐base tautomers , 2004, J. Comput. Chem..

[34]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[35]  Rick A. Kendall,et al.  The impact of the resolution of the identity approximate integral method on modern ab initio algorithm development , 1997 .

[36]  Martin Head-Gordon,et al.  An improved semidirect MP2 gradient method , 1999 .

[37]  S. Xantheas,et al.  The binding energies of the D2d and S4 water octamer isomers: high-level electronic structure and empirical potential results. , 2004, Journal of Chemical Physics.

[38]  Jon Baker,et al.  Q‐Chem 2.0: a high‐performance ab initio electronic structure program package , 2000, J. Comput. Chem..

[39]  Philippe Y. Ayala,et al.  Linear scaling second-order Moller–Plesset theory in the atomic orbital basis for large molecular systems , 1999 .

[40]  Martin Head-Gordon,et al.  The Theoretical Prediction of Molecular Radical Species: a Systematic Study of Equilibrium Geometries and Harmonic Vibrational Frequencies , 2001 .