Almost Spanning Subgraphs of Random Graphs After Adversarial Edge Removal

Let Δ⩾2 be a fixed integer. We show that the random graph Gn,p with p⩾c(logn/n)1/Δ is robust with respect to the containment of almost spanning bipartite graphs H with maximum degree Δ and sublinear bandwidth in the following sense. If an adversary deletes arbitrary edges in Gn,p such that each vertex loses less than half of its neighbours, then asymptotically almost surely the resulting graph still contains a copy of H.

[1]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[2]  Noga Alon,et al.  Spanning subgraphs of random graphs , 1992, Graphs Comb..

[3]  Alan M. Frieze,et al.  Polychromatic Hamilton cycles , 1993, Discret. Math..

[4]  Y. Kohayakawa Szemerédi's regularity lemma for sparse graphs , 1997 .

[5]  Alan M. Frieze,et al.  Multicoloured Hamilton Cycles , 1995, Electron. J. Comb..

[6]  Yoshiharu Kohayakawa,et al.  Szemerédi’s Regularity Lemma and Quasi-randomness , 2003 .

[7]  Noga Alon,et al.  Embedding nearly-spanning bounded degree trees , 2007, Comb..

[8]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[9]  Yoshiharu Kohayakawa,et al.  Small subsets inherit sparse epsilon-regularity , 2007, J. Comb. Theory, Ser. B.

[10]  Wojciech Samotij,et al.  Local resilience of almost spanning trees in random graphs , 2011, Random Struct. Algorithms.

[11]  Carsten Thomassen,et al.  Path and cycle sub-ramsey numbers and an edge-colouring conjecture , 1986, Discret. Math..

[12]  M. Schacht,et al.  Proof of the bandwidth conjecture of Bollobás and Komlós , 2009 .

[13]  Yoshiharu Kohayakawa,et al.  Universality and tolerance , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[14]  Yoshiharu Kohayakawa,et al.  Small subsets inherit sparse ε-regularity , 2004 .

[15]  Yoshiharu Kohayakawa,et al.  Regular pairs in sparse random graphs I , 2003, Random Struct. Algorithms.

[16]  Benny Sudakov,et al.  Local resilience of graphs , 2007, Random Struct. Algorithms.

[17]  Noga Alon,et al.  Sparse universal graphs for bounded‐degree graphs , 2007, Random Struct. Algorithms.

[18]  Noga Alon,et al.  Optimal universal graphs with deterministic embedding , 2008, SODA '08.

[19]  Domingos Dellamonica,et al.  On the Resilience of Long Cycles in Random Graphs , 2008, Electron. J. Comb..

[20]  P. Lax Proof of a conjecture of P. Erdös on the derivative of a polynomial , 1944 .

[21]  G. Dirac Some Theorems on Abstract Graphs , 1952 .

[22]  Domingos Dellamonica,et al.  Universality of random graphs , 2008, SODA '08.

[23]  Vojtech Rödl,et al.  Hypergraph Packing and Graph Embedding , 1999, Combinatorics, Probability and Computing.

[24]  Vojtech Rödl,et al.  Perfect Matchings in ε-Regular Graphs and the Blow-Up Lemma , 1999, Comb..

[25]  Yoshiharu Kohayakawa,et al.  Sparse partition universal graphs for graphs of bounded degree , 2011 .

[26]  Julia Böttcher,et al.  Bandwidth, expansion, treewidth, separators and universality for bounded-degree graphs , 2009, Eur. J. Comb..

[27]  B. Reed,et al.  Recent advances in algorithms and combinatorics , 2003 .