Split-localized orbitals can yield stronger configuration interaction convergence than natural orbitals

The convergence of configuration interaction (CI) expansions depends upon the orbitals from which the configurations are formed. Since their introduction half a century ago, natural orbitals have gained an increasing popularity for generating rapidly converging CI expansions and the notion has become widespread that they always yield the fastest CI convergence. It is shown here that, in fact, certain localized orbitals often yield a better CI convergence than natural orbitals, as measured by a wave function criterion as well as by an energy criterion.

[1]  Michael W. Schmidt,et al.  A natural orbital diagnostic for multiconfigurational character in correlated wave functions , 1999 .

[2]  C. David Sherrill,et al.  The Configuration Interaction Method: Advances in Highly Correlated Approaches , 1999 .

[3]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[4]  H. Schaefer,et al.  Natural orbitals from single and double excitation configuration interaction wave functions: their use in second‐order configuration interaction and wave functions incorporating limited triple and quadruple excitations , 1992 .

[5]  Michael W. Schmidt,et al.  The construction and interpretation of MCSCF wavefunctions. , 1998, Annual review of physical chemistry.

[6]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[7]  Frederick R. Manby,et al.  Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations , 2003 .

[8]  Michael W. Schmidt,et al.  Are atoms sic to molecular electronic wavefunctions? II. Analysis of fors orbitals , 1982 .

[9]  Klaus Ruedenberg,et al.  Identification of deadwood in configuration spaces through general direct configuration interaction , 2001 .

[10]  J. Pople,et al.  The molecular orbital theory of chemical valency. IV. The significance of equivalent orbitals , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[11]  E. Carter,et al.  Local weak-pairs pseudospectral multireference configuration interaction , 2002 .

[12]  Peter Pulay,et al.  UHF natural orbitals for defining and starting MC‐SCF calculations , 1988 .

[13]  Henry F. Schaefer,et al.  Compact Variational Wave Functions Incorporating Limited Triple and Quadruple Substitutions , 1996 .

[14]  S. F. Boys,et al.  Canonical Configurational Interaction Procedure , 1960 .

[15]  Martin Head-Gordon,et al.  Closely approximating second-order Mo/ller–Plesset perturbation theory with a local triatomics in molecules model , 2000 .

[16]  Peter Pulay,et al.  The unrestricted natural orbital–complete active space (UNO–CAS) method: An inexpensive alternative to the complete active space–self‐consistent‐field (CAS–SCF) method , 1989 .

[17]  Jan Almlöf,et al.  Laplace transform techniques in Mo/ller–Plesset perturbation theory , 1992 .

[18]  Peter Pulay,et al.  A low-scaling method for second order Møller–Plesset calculations , 2001 .

[19]  Emily A. Carter,et al.  Local correlation in the virtual space in multireference singles and doubles configuration interaction , 2003 .

[20]  T. Daniel Crawford,et al.  Locally correlated equation-of-motion coupled cluster theory for the excited states of large molecules , 2002 .

[21]  Peter Pulay,et al.  Generalized Mo/ller–Plesset perturbation theory: Second order results for two‐configuration, open‐shell excited singlet, and doublet wave functions , 1989 .

[22]  Peter Pulay,et al.  Localizability of dynamic electron correlation , 1983 .

[23]  Michael W. Schmidt,et al.  Are atoms intrinsic to molecular electronic wavefunctions? III. Analysis of FORS configurations , 1982 .

[24]  C. David Sherrill,et al.  A comparison of polarized double-zeta basis sets and natural orbitals for full configuration interaction benchmarks , 2003 .

[25]  Philippe Y. Ayala,et al.  Linear scaling coupled cluster and perturbation theories in the atomic orbital basis , 1999 .

[26]  Deadwood in configuration spaces. II. Singles + doubles and singles + doubles + triples + quadruples spaces , 2002 .

[27]  Yixiang Cao,et al.  Correlated ab Initio Electronic Structure Calculations for Large Molecules , 1999 .

[28]  H. Schaefer,et al.  Efficient use of Jacobi rotations for orbital optimization and localization , 1993 .

[29]  P. Löwdin Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction , 1955 .

[30]  E. Davidson,et al.  An approximation to frozen natural orbitals through the use of the Hartree–Fock exchange potential , 1981 .

[31]  Martin Head-Gordon,et al.  Quantum chemistry and molecular processes , 1996 .

[32]  Michael W. Schmidt,et al.  Are atoms intrinsic to molecular electronic wavefunctions? I. The FORS model , 1982 .

[33]  Michael W. Schmidt,et al.  Intraatomic correlation correction in the FORS model , 1985 .

[34]  Harrison Shull,et al.  NATURAL ORBITALS IN THE QUANTUM THEORY OF TWO-ELECTRON SYSTEMS , 1956 .

[35]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[36]  Hans-Joachim Werner,et al.  Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD) , 2001 .

[37]  Martin Head-Gordon,et al.  Non-iterative local second order Møller–Plesset theory , 1998 .

[38]  K. Ruedenberg,et al.  Electron pairs, localized orbitals and electron correlation , 2002 .

[39]  Ernest R. Davidson,et al.  Properties and Uses of Natural Orbitals , 1972 .

[40]  S. Xantheas,et al.  Exploiting regularity in systematic sequences of wavefunctions which approach the full CI limit , 1992 .

[41]  Richard A. Friesner,et al.  Application and development of multiconfigurational localized perturbation theory , 2001 .

[42]  Stefano Evangelisti,et al.  Direct generation of local orbitals for multireference treatment and subsequent uses for the calculation of the correlation energy , 2002 .

[43]  P Pulay,et al.  Local Treatment of Electron Correlation , 1993 .

[44]  E. Davidson,et al.  NATURE OF THE CONFIGURATION-INTERACTION METHOD IN AB INITIO CALCULATIONS. I. Ne GROUND STATE. , 1970 .

[45]  Rodney J. Bartlett,et al.  Correlation energy estimates in periodic extended systems using the localized natural bond orbital coupled cluster approach , 2003 .

[46]  G. Scuseria,et al.  Scaling reduction of the perturbative triples correction (T) to coupled cluster theory via Laplace transform formalism , 2000 .

[47]  R. Bartlett,et al.  Localized correlation treatment using natural bond orbitals , 2003 .

[48]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .