The Korteweg–de Vries–Burgers equation and its approximate solution

In this paper, we study the Korteweg–de Vries–Burgers equation with boundary conditions. After making a series of transformations, we convert the Korteweg–de Vries–Burgers equation into an Emden–Fowler equation. An approximate solution in series form is obtained by means of the Adomian decomposition method. The solution is illustrated to agree well with phase plane analysis.

[1]  Zhaosheng Feng,et al.  The first-integral method to study the Burgers–Korteweg–de Vries equation , 2002 .

[2]  D. Peregrine A Modern Introduction to the Mathematical Theory of Water Waves. By R. S. Johnson. Cambridge University Press, 1997. xiv+445 pp. Hardback ISBN 0 521 59172 4 £55.00; paperback 0 521 59832 X £19.95. , 1998, Journal of Fluid Mechanics.

[3]  Mingliang Wang Exact solutions for a compound KdV-Burgers equation , 1996 .

[4]  Wang Kelin,et al.  Exact solutions for two nonlinear equations. I , 1990 .

[5]  M. Wadati,et al.  Wave Propagation in Nonlinear Lattice. III , 1975 .

[6]  W. Mccrea An Introduction to the Study of Stellar Structure , 1939, Nature.

[7]  John Gibbon,et al.  The Painlevé Property and Hirota's Method , 1985 .

[8]  New Solitary Wave Solutions to the KdV-Burgers Equation , 2005 .

[9]  D. Jordan,et al.  Nonlinear ordinary differential equations (2nd ed.) , 1987 .

[10]  M. Vlieg-Hulstman,et al.  The Korteweg-de Vries-Burgers' equation: a reconstruction of exact solutions , 1991 .

[11]  R. S. Johnson A non-linear equation incorporating damping and dispersion , 1970, Journal of Fluid Mechanics.

[12]  H. Steudel,et al.  Non-existence of prolongation structure for the Korteweg-de Vries-Burgers equation , 1985 .

[13]  C. S. Gardner,et al.  Korteweg‐de Vries Equation and Generalizations. III. Derivation of the Korteweg‐de Vries Equation and Burgers Equation , 1969 .

[14]  Ke Chen,et al.  Applied Mathematics and Computation , 2022 .

[15]  H. Poincaré,et al.  Les Méthodes nouvelles de la Mécanique céleste and An Introduction to the Study of Stellar Structure , 1958 .

[16]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[17]  G. Gao A theory of interaction between dissipation and dispersion of turbulence , 1985 .

[18]  E. Fan,et al.  Extended tanh-function method and its applications to nonlinear equations , 2000 .

[19]  H. Grad,et al.  Unified Shock Profile in a Plasma , 1967 .

[20]  Shun Jian-jun The proper analytical solution of the Korteweg-de Vries-Burgers equation , 1987 .

[21]  A. Fordy,et al.  The prolongation structures of quasi-polynomial flows , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  L. van Wijngaarden,et al.  One-Dimensional Flow of Liquids Containing Small Gas Bubbles , 1972 .

[23]  P. Hu Collisional Theory of Shock and Nonlinear Waves in a Plasma , 1972 .

[24]  S. Novikov,et al.  Evolution of a Whitham zone in Korteweg-de Vries theory , 1987 .

[25]  S. I. Zaki Solitary waves of the Korteweg–de Vries–Burgers' equation , 2000 .

[26]  G. Adomian Nonlinear Stochastic Operator Equations , 1986 .

[27]  Igor S. Nefedov,et al.  New class of solutions of the Korteweg-de Vries-Burgers equation , 2001, Appl. Math. Lett..

[28]  Hilmi Demiray,et al.  A travelling wave solution to the KdV-Burgers equation , 2004, Appl. Math. Comput..

[29]  Wen-Xiu Ma,et al.  An exact solution to two-dimensional Korteweg-de Vries-Burgers equation , 1993 .

[30]  Zhaosheng Feng Exact solution in terms of elliptic functions for the Burgers–Korteweg–de Vries equation , 2003 .

[31]  A. Jeffrey,et al.  Exact solutions to the Korteweg-de Vries-Burgers equation , 1989 .

[32]  J. M. Burgers,et al.  Mathematical Examples Illustrating Relations Occurring in the Theory of Turbulent Fluid Motion , 1995 .

[33]  T. Kawahara Weak Nonlinear Magneto-Acoustic Waves in a Cold Plasma in the Presence of Effective Electron-Ion Collisions , 1970 .

[34]  M. Vlieg-Hulstman,et al.  Korteweg-de Vries-Burgers equation and the Painleve property , 1992 .

[35]  E. J. Parkes,et al.  Exact solutions to the two-dimensional Korteweg-de Vries-Burgers equation , 1994 .

[36]  J. Bona,et al.  Travelling-wave solutions to the Korteweg-de Vries-Burgers equation , 1985, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[37]  José Canosa,et al.  The Korteweg-de Vries-Burgers equation , 1977 .

[38]  B. Duffy,et al.  An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations , 1996 .

[39]  I. McIntosh Single phase averaging and travelling wave solutions of the modified Burgers-Korteweg-de Vries equation , 1990 .

[40]  L. Gardner,et al.  Simulations of solitons using quadratic spline finite elements , 1991 .

[41]  B. Qin,et al.  Direct evidence of phosphorus outbreak release from sediment to overlying water in a large shallow lake caused by strong wind wave disturbance , 2005 .

[42]  D. Jordan,et al.  Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers , 1979 .

[43]  A novel slightly compressible model for low Mach number perfect gas flow calculation , 2002 .

[44]  S Liu,et al.  KdV-BURGERS EQUATION MODELLING OF TURBULENCE , 1992 .

[45]  A. Wazwaz A First Course in Integral Equations , 1997 .

[46]  Wang Ming-Liang,et al.  Travelling wave solutions to the two-dimensional KdV-Burgers equation , 1993 .

[47]  Zhaosheng Feng,et al.  The first integral method to the two-dimensional Burgers–Korteweg–de Vries equation , 2003 .

[48]  Abdul-Majid Wazwaz,et al.  A comparison between Adomian decomposition method and Taylor series method in the series solutions , 1998, Appl. Math. Comput..

[49]  George Adomian,et al.  Solving Frontier Problems of Physics: The Decomposition Method , 1993 .

[50]  A. Jeffrey,et al.  Exact solutions to the KdV-Burgers' equation , 1991 .

[51]  R. Johnson Shallow Water Waves on a Viscous Fluid—The Undular Bore , 1972 .

[52]  E. Novotny Introduction to Stellar Atmospheres and Interiors , 1973 .

[53]  R. S. Johnson,et al.  A Modern Introduction to the Mathematical Theory of Water Waves: Bibliography , 1997 .

[54]  V. P. Korobeinikov Some Exact Solutions of Korteweg- De Vries- Burgers Equation for Plane, Cylindrical and Spherical Waves , 1983 .

[55]  H. Demiray A note on the exact travelling wave solution to the KdV–Burgers equation , 2003 .

[56]  M. Helal,et al.  A comparison between two different methods for solving KdV–Burgers equation , 2006 .

[57]  E. J. Parkes,et al.  Travelling solitary wave solutions to a compound KdV-Burgers equation , 1997 .

[58]  Thomas Brooke Benjamin,et al.  On cnoidal waves and bores , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[59]  Jian Zhang,et al.  A new complex line soliton for the two-dimensional KdV–Burgers equation , 2001 .