Scale- and parameter-adaptive model-based gradient pre-conditioner for elastic full-waveform inversion

S U M M A R Y We present a scaleand parameter-adaptive method to pre-condition the gradient of the parameters to be inverted in time-domain 2-D elastic full-waveform inversion (FWI). The proposed technique, which relies on a change of variables of the model parameters, allows to balance the value of the gradient of the Lamé parameters and density throughout the model in each step of the multiscale inversion. The main difference compared to existing gradient pre-conditioners is that the variables are automatically selected based on a leastsquares minimization criteria of the gradient weight, which corresponds to the product of the gradient by a power of the parameter to be inverted. Based on numerical tests made with (1) a modified version of the Marmousi-2 model, and (2) a high-velocity and density local anomaly model, we illustrate that the value of the power helps to balance the gradient throughout the model. In addition, we show that a particular value exists for each parameter that optimizes the inversion results in terms of accuracy and efficiency. For the two models, the optimal power is ∼2.0–2.5 and ∼1.5 for the first and second Lamé parameters, respectively; and between 3 and 6, depending on the inverted frequency, for density. These power values provide the fastest and most accurate inversion results for the three parameters in the framework of multiscale and multishooting FWI using three different optimization schemes.

[1]  R. Courant,et al.  On the Partial Difference Equations, of Mathematical Physics , 2015 .

[3]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[4]  P. Jaiswal,et al.  Seismic characterization of hydrates in faulted, fine-grained sediments of Krishna-Godavari Basin: Full waveform inversion , 2012 .

[5]  H. C. Larsen,et al.  Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography , 2000 .

[6]  P. Jaiswal,et al.  Seismic characterization of hydrates in faulted, fine‐grained sediments of Krishna‐Godavari basin: Unified imaging , 2012 .

[7]  S. Operto,et al.  The truncated Newton method for Full Waveform Inversion , 2012 .

[8]  Andreas Fichtner,et al.  The adjoint method in seismology—: II. Applications: traveltimes and sensitivity functionals , 2006 .

[9]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[10]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[11]  J. Canales Small‐scale structure of the Kane oceanic core complex, Mid‐Atlantic Ridge 23°30′N, from waveform tomography of multichannel seismic data , 2010 .

[12]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[13]  Jean Virieux,et al.  Quantitative imaging of complex structures from dense wide‐aperture seismic data by multiscale traveltime and waveform inversions: a case study , 2004 .

[14]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[15]  A. Guitton,et al.  Attenuating crosstalk noise with simultaneous source full waveform inversion ★ , 2012 .

[16]  L. Sirgue,et al.  3D Frequency Domain Waveform Inversion Using Time Domain Finite Difference Methods , 2008 .

[17]  J. Virieux,et al.  Iterative asymptotic inversion in the acoustic approximation , 1992 .

[18]  R. Pratt Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .

[19]  J. Krebs,et al.  Fast full-wavefield seismic inversion using encoded sources , 2009 .

[20]  Gary Martin,et al.  Marmousi2 An elastic upgrade for Marmousi , 2006 .

[21]  Antoine Guitton,et al.  Constrained full-waveform inversion by model reparameterization1 , 2012 .

[22]  C. Bunks,et al.  Multiscale seismic waveform inversion , 1995 .

[23]  Jean Virieux,et al.  Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt , 2004 .

[24]  Denes Vigh,et al.  3D Full waveform inversion on a Gulf of Mexico WAZ data set , 2010 .

[25]  Changsoo Shin,et al.  Efficient calculation of a partial-derivative wavefield using reciprocity for seismic imaging and inversion , 2001 .

[26]  D. Min,et al.  Full waveform inversion strategy for density in the frequency domain , 2012 .

[27]  S. Operto,et al.  Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion , 2009 .

[28]  J. Virieux,et al.  Multiscale seismic imaging of the eastern Nankai trough by full waveform inversion , 2004 .

[29]  Changsoo Shin,et al.  Comparison of waveform inversion, part 1: conventional wavefield vs logarithmic wavefield , 2007 .

[30]  R. Plessix,et al.  Thematic Set: Full waveform inversion of a deep water ocean bottom seismometer dataset , 2010 .

[31]  M. Warner,et al.  Shallow oceanic crust: Full waveform tomographic images of the seismic layer 2A/2B boundary , 2012 .

[32]  A. Abubakar,et al.  Preconditioned non‐linear conjugate gradient method for frequency domain full‐waveform seismic inversion , 2011 .

[33]  Luigi Grippo,et al.  A globally convergent version of the Polak-Ribière conjugate gradient method , 1997, Math. Program..

[34]  Ludovic Métivier,et al.  A guided tour of multiparameter full-waveform inversion with multicomponent data: From theory to practice , 2013 .

[35]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[36]  The truncated Newton method for Full Waveform Inversion , 2012 .

[37]  A. Abubakar,et al.  Compressed implicit Jacobian scheme for elastic full-waveform inversion , 2012 .