The extended Gravitational Decoupling method in Pure Lovelock gravity

We provide an extension of the gravitational decoupling method in Pure Lovelock gravity. Thus, it is developed an algorithm that shows how to decouple gravitational sources in this theory. This extended method allows to obtain several new and known analytic solutions of physical interest in scenarios with extra dimensions and with presence of higher curvature terms in the action. Furthermore, by using our extension, we show that by applying the minimal geometric deformation to the Anti de Sitter space time it is possible to obtain regular black hole solutions.

[1]  M. Sharif,et al.  2+1-dimensional gravitational decoupled anisotropic solutions , 2019, Chinese Journal of Physics.

[2]  M. Sharif,et al.  Anisotropic spherical solutions by gravitational decoupling in f(R) gravity , 2019, Annals of Physics.

[3]  A. Sotomayor,et al.  A causal Schwarzschild-de Sitter interior solution by gravitational decoupling , 2019, The European Physical Journal C.

[4]  C. Las Heras,et al.  New algorithms to obtain analytical solutions of Einstein’s equations in isotropic coordinates , 2019, The European Physical Journal C.

[5]  V. Bezerra,et al.  Black holes with quintessence in pure Lovelock gravity , 2019, General Relativity and Gravitation.

[6]  P. Bargueño,et al.  Extended gravitational decoupling in 2  +  1 dimensional space-times , 2019, Classical and Quantum Gravity.

[7]  P. Bargueño,et al.  A general interior anisotropic solution for a BTZ vacuum in the context of the minimal geometric deformation decoupling approach , 2019, The European Physical Journal C.

[8]  V. Bezerra,et al.  Black holes with a cloud of strings in pure Lovelock gravity , 2019, The European Physical Journal C.

[9]  R. Aros,et al.  Regular black holes and its thermodynamics in Lovelock gravity , 2019, The European Physical Journal C.

[10]  Sushant G. Ghosh,et al.  Thermodynamics of rotating Bardeen black holes: Phase transitions and thermodynamics volume , 2019, Physical Review D.

[11]  E. Contreras Gravitational decoupling in 2  +  1 dimensional space-times with cosmological term , 2019, Classical and Quantum Gravity.

[12]  S. K. Maurya,et al.  Generalized relativistic anisotropic compact star models by gravitational decoupling , 2019, The European Physical Journal C.

[13]  J. Ovalle Decoupling gravitational sources in general relativity: The extended case , 2018, Physics Letters B.

[14]  A. Tzikas Bardeen black hole chemistry , 2018, Physics Letters B.

[15]  R. Prado,et al.  The gravitational decoupling method: the higher-dimensional case to find new analytic solutions , 2018, The European Physical Journal Plus.

[16]  Sushant G. Ghosh,et al.  D-dimensional Bardeen–AdS black holes in Einstein–Gauss–Bonnet theory , 2018, The European Physical Journal C.

[17]  A. Sotomayor,et al.  Einstein-Klein-Gordon system by gravitational decoupling , 2018, EPL (Europhysics Letters).

[18]  M. Sharif,et al.  Gravitational decoupled anisotropic solutions in $$f({\mathcal {G}})$$f(G) gravity , 2018, The European Physical Journal C.

[19]  Á. Rincón,et al.  Minimal geometric deformation in a cloud of strings , 2018, The European Physical Journal C.

[20]  P. Bargueño,et al.  Minimal geometric deformation in asymptotically (A-)dS space-times and the isotropic sector for a polytropic black hole , 2018, The European Physical Journal C.

[21]  F. Tello‐Ortiz,et al.  Compact anisotropic models in general relativity by gravitational decoupling , 2018, The European Physical Journal C.

[22]  E. Contreras Minimal Geometric Deformation: the inverse problem , 2018, The European Physical Journal C.

[23]  Rafael Pérez Graterol A new anisotropic solution by MGD gravitational decoupling , 2018, The European Physical Journal Plus.

[24]  M. Sharif,et al.  Gravitational decoupled anisotropic solutions for cylindrical geometry , 2018, The European Physical Journal Plus.

[25]  P. Bargueño,et al.  Minimal geometric deformation decoupling in $$2+1$$2+1 dimensional space–times , 2018, The European Physical Journal C.

[26]  F. Tello‐Ortiz,et al.  Charged anisotropic compact objects by gravitational decoupling , 2018, The European Physical Journal C.

[27]  M. Sharif,et al.  Gravitational decoupled charged anisotropic spherical solutions , 2018, 1804.09616.

[28]  P. León,et al.  Using MGD Gravitational Decoupling to Extend the Isotropic Solutions of Einstein Equations to the Anisotropical Domain , 2018, Fortschritte der Physik.

[29]  A. Sotomayor,et al.  Black holes by gravitational decoupling , 2018, The European Physical Journal C.

[30]  F. Tello‐Ortiz,et al.  A new family of analytical anisotropic solutions by gravitational decoupling , 2018, The European Physical Journal Plus.

[31]  Á. Rincón,et al.  Gravitational decoupled anisotropies in compact stars , 2018, 1802.08000.

[32]  A. Sotomayor,et al.  Anisotropic solutions by gravitational decoupling , 2017, 1708.00407.

[33]  J. Ovalle Decoupling gravitational sources in general relativity: from perfect to anisotropic fluids , 2017, 1704.05899.

[34]  N. Dadhich,et al.  Buchdahl compactness limit for a pure Lovelock static fluid star , 2016, 1606.01330.

[35]  N. Dadhich,et al.  Compact objects in pure Lovelock theory , 2016, 1607.07095.

[36]  A. Khugaev,et al.  Buchdahl–Vaidya–Tikekar model for stellar interior in pure Lovelock gravity , 2016, 1607.06229.

[37]  N. Dadhich,et al.  Universality of isothermal fluid spheres in Lovelock gravity , 2015, 1510.07490.

[38]  Xiao-Mei Kuang,et al.  Topological black holes in pure Gauss-Bonnet gravity and phase transitions , 2015, 1507.02309.

[39]  N. Dadhich A distinguishing gravitational property for gravitational equation in higher dimensions , 2015, 1506.08764.

[40]  N. Dadhich,et al.  Static pure Lovelock black hole solutions with horizon topology S(n) × S(n) , 2015, 1503.00974.

[41]  C. Rovelli,et al.  On the effective metric of a Planck star , 2014, 1412.6015.

[42]  C. Rovelli,et al.  Planck stars , 2014, 1401.6562.

[43]  N. Dadhich On Lovelock vacuum solution , 2010, 1006.0337.

[44]  I. Dymnikova,et al.  Regular black hole remnants in de Sitter space , 2010 .

[45]  N. Ohta,et al.  Black Holes in Pure Lovelock Gravities , 2006, hep-th/0604088.

[46]  D. Lovelock The Einstein Tensor and Its Generalizations , 1971 .