A variational multiscale finite element method for monolithic ALE computations of shock hydrodynamics using nodal elements

We present a monolithic arbitrary Lagrangian-Eulerian (ALE) finite element method for computing highly transient flows with strong shocks. We use a variational multiscale (VMS) approach to stabilize a piecewise-linear Galerkin formulation of the equations of compressible flows, and an entropy artificial viscosity to capture strong solution discontinuities. Our work demonstrates the feasibility of VMS methods for highly transient shock flows, an area of research for which the VMS literature is extremely scarce.In addition, the proposed monolithic ALE method is an alternative to the more commonly used Lagrangian+remap methods, in which, at each time step, a Lagrangian computation is followed by mesh smoothing and remap (conservative solution interpolation). Lagrangian+remap methods are the methods of choice in shock hydrodynamics computations because they provide nearly optimal mesh resolution in proximity of shock fronts. However, Lagrangian+remap methods are not well suited for imposing inflow and outflow boundary conditions. These issues offer an additional motivation for the proposed approach, in which we first perform the mesh motion, and then the flow computations using the monolithic ALE framework.The proposed method is second-order accurate and stable, as demonstrated by extensive numerical examples in two and three space dimensions.

[1]  N. Ron-Ho,et al.  A Multiple-Grid Scheme for Solving the Euler Equations , 1982 .

[2]  Onkar Sahni,et al.  Variational Multiscale Analysis: The Fine-Scale Green's Function for Stochastic Partial Differential Equations , 2013, SIAM/ASA J. Uncertain. Quantification.

[3]  Charbel Farhat,et al.  The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids , 2001 .

[4]  Rémi Abgrall,et al.  Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes , 2011, J. Comput. Phys..

[5]  Xianyi Zeng,et al.  A frame-invariant vector limiter for flux corrected nodal remap in arbitrary Lagrangian-Eulerian flow computations , 2014, J. Comput. Phys..

[6]  Guillermo Hauke,et al.  Simple stabilizing matrices for the computation of compressible flows in primitive variables , 2001 .

[7]  D. Benson An efficient, accurate, simple ALE method for nonlinear finite element programs , 1989 .

[8]  Herman Deconinck,et al.  Residual distribution for general time-dependent conservation laws , 2005 .

[9]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[10]  Tzanio V. Kolev,et al.  High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics , 2012, SIAM J. Sci. Comput..

[11]  Jean-Luc Guermond,et al.  Entropy–viscosity method for the single material Euler equations in Lagrangian frame , 2016 .

[12]  Thomas J. R. Hughes,et al.  Multiscale and Stabilized Methods , 2007 .

[13]  Thomas J. R. Hughes,et al.  The Continuous Galerkin Method Is Locally Conservative , 2000 .

[14]  Rémi Abgrall,et al.  An ALE Formulation for Explicit Runge–Kutta Residual Distribution , 2014, Journal of Scientific Computing.

[15]  Jean-Luc Guermond,et al.  Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..

[16]  Guglielmo Scovazzi,et al.  A discourse on Galilean invariance, SUPG stabilization, and the variational multiscale framework , 2007 .

[17]  Thomas J. R. Hughes,et al.  Stabilized Methods for Compressible Flows , 2010, J. Sci. Comput..

[18]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[19]  David L. Darmofal,et al.  The solution of the compressible Euler equations at low Mach numbers using a stabilized finite element algorithm , 2001 .

[20]  Mikhail Shashkov,et al.  Formulations of Artificial Viscosity for Multi-dimensional Shock Wave Computations , 1998 .

[21]  Charbel Farhat,et al.  Design and analysis of ALE schemes with provable second-order time-accuracy for inviscid and viscous flow simulations , 2003 .

[22]  Pavel Váchal,et al.  Symmetry- and essentially-bound-preserving flux-corrected remapping of momentum in staggered ALE hydrodynamics , 2013, J. Comput. Phys..

[23]  Raphaël Loubère,et al.  ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method , 2010, J. Comput. Phys..

[24]  Thomas J. R. Hughes,et al.  Stabilized shock hydrodynamics: I. A Lagrangian method , 2007 .

[25]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[26]  Herman Deconinck,et al.  A Conservative Formulation of the Multidimensional Upwind Residual Distribution Schemes for General Nonlinear Conservation Laws , 2002 .

[27]  C. J. Chapman,et al.  High Speed Flow , 2000 .

[28]  Mikhail Shashkov,et al.  Multi-Scale Lagrangian Shock Hydrodynamics on Q1/P0 Finite Elements: Theoretical Framework and Two-dimensional Computations. , 2008 .

[29]  Jean-Luc Guermond,et al.  From Suitable Weak Solutions to Entropy Viscosity , 2011, J. Sci. Comput..

[30]  Guglielmo Scovazzi,et al.  Stabilized shock hydrodynamics: II. Design and physical interpretation of the SUPG operator for Lagrangian computations☆ , 2007 .

[31]  Gregory W. Brown,et al.  Application of a three-field nonlinear fluid–structure formulation to the prediction of the aeroelastic parameters of an F-16 fighter , 2003 .

[32]  Mario Ricchiuto,et al.  Stabilized residual distribution for shallow water simulations , 2009, J. Comput. Phys..

[33]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[34]  Mikhail J. Shashkov,et al.  Conservative multi-material remap for staggered multi-material Arbitrary Lagrangian-Eulerian methods , 2014, J. Comput. Phys..

[35]  Guglielmo Scovazzi,et al.  A generalized view on Galilean invariance in stabilized compressible flow computations , 2010 .

[36]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..

[37]  Herman Deconinck,et al.  Residual Distribution Schemes: Foundations and Analysis , 2007 .

[38]  Guglielmo Scovazzi,et al.  Galilean invariance and stabilized methods for compressible flows , 2007 .

[39]  William J. Rider,et al.  A conservative nodal variational multiscale method for Lagrangian shock hydrodynamics , 2010 .

[40]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[41]  J. Williamson Low-storage Runge-Kutta schemes , 1980 .

[42]  J. F. Aymone,et al.  Mesh motion techniques for the ALE formulation in 3D large deformation problems , 2004 .

[43]  Giancarlo Sangalli,et al.  Variational Multiscale Analysis: the Fine-scale Green's Function, Projection, Optimization, Localization, and Stabilized Methods , 2007, SIAM J. Numer. Anal..

[44]  Guglielmo Scovazzi,et al.  On the angular momentum conservation and incremental objectivity properties of a predictor/multi-corrector method for Lagrangian shock hydrodynamics , 2009 .

[45]  Rainald Löhner,et al.  Improved ALE mesh velocities for moving bodies , 1996 .

[46]  C. Farhat,et al.  Partitioned procedures for the transient solution of coupled aroelastic problems Part I: Model problem, theory and two-dimensional application , 1995 .

[47]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[48]  L Howarth Similarity and Dimensional Methods in Mechanics , 1960 .

[49]  Jean-Luc Guermond,et al.  Viscous Regularization of the Euler Equations and Entropy Principles , 2012, SIAM J. Appl. Math..

[50]  Joseph Falcovitz,et al.  VIP (Vector Image Polygon) multi-dimensional slope limiters for scalar variables , 2013 .

[51]  Guglielmo Scovazzi,et al.  Lagrangian shock hydrodynamics on tetrahedral meshes: A stable and accurate variational multiscale approach , 2012, J. Comput. Phys..

[52]  Thomas J. R. Hughes,et al.  Conservation properties for the Galerkin and stabilised forms of the advection–diffusion and incompressible Navier–Stokes equations , 2005 .

[53]  Jean-Luc Guermond,et al.  Entropy-based nonlinear viscosity for Fourier approximations of conservation laws , 2008 .

[54]  J. Guermond,et al.  ENTROPY VISCOSITY FOR CONSERVATION EQUATIONS , 2010 .

[55]  Patrick M. Knupp,et al.  Winslow Smoothing on Two-Dimensional Unstructured Meshes , 1999, Engineering with Computers.

[56]  Guglielmo Scovazzi,et al.  A Nitsche method for wave propagation problems in time domain , 2015 .

[57]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[58]  Marc R.J. Charest,et al.  A three-dimensional finite element arbitrary Lagrangian–Eulerian method for shock hydrodynamics on unstructured grids☆ , 2014 .

[59]  Charbel Farhat,et al.  Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes , 1999 .

[60]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[61]  Jean-Michel Ghidaglia,et al.  ON BOUNDARY CONDITIONS FOR MULTIDIMENSIONAL HYPERBOLIC SYSTEMS OF CONSERVATION LAWS IN THE FINITE VOLUME FRAMEWORK , 2002 .

[62]  Guglielmo Scovazzi,et al.  A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian-Eulerian computations with nodal finite elements , 2011, J. Comput. Phys..