Emulsion droplet deformation and breakup with Lattice Boltzmann model

In this paper we have performed an extensive study of the effects of various dimensionless numerical parameters used in the Lattice Boltzmann implementation of the diffuse interface model describing deformation and breakup of an emulsion droplet in 2D. Such an extensive study on these parameter is absent in scientific literature of diffuse interface models. We have found that parameters like the dimensionless interface thickness and the Peclet number have to be within certain ranges for correct physical behavior. Outside these ranges droplets either dissolve, show incorrect Laplace pressures, or do not deform to stable shapes at subcritical capillary numbers. Furthermore, we have found that droplet breakup is sensitive to these parameters.

[1]  S. Richardson,et al.  Two-dimensional bubbles in slow viscous flows , 1968, Journal of Fluid Mechanics.

[2]  J. S. Rowlinson,et al.  Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density” , 1979 .

[3]  Yeomans,et al.  Lattice Boltzmann simulation of nonideal fluids. , 1995, Physical review letters.

[4]  Jgm Hans Kuerten,et al.  A boundary integral method for two-dimensional (non)-Newtonian drops in slow viscous flow , 1995 .

[5]  Josef Honerkamp,et al.  Dynamics and rheology of the morphology of immiscible polymer blends – on modeling and simulation , 2002 .

[6]  John E. Hilliard,et al.  Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .

[7]  Xiaoyi He,et al.  Thermodynamic Foundations of Kinetic Theory and Lattice Boltzmann Models for Multiphase Flows , 2002 .

[8]  Mario De Menech Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model , 2006 .

[9]  J. Waals The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .

[10]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[11]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[12]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[13]  Jie Shen,et al.  Interfacial forces and Marangoni flow on a nematic drop retracting in an isotropic fluid. , 2005, Journal of Colloid and Interface Science.

[14]  Ignacio Pagonabarraga,et al.  LUDWIG: A parallel Lattice-Boltzmann code for complex fluids , 2001 .

[15]  D. Jacqmin Regular Article: Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling , 1999 .

[16]  Nader Bagherzadeh,et al.  Finding elliptical shapes in an image using a pyramid architecture , 1995 .

[17]  M. H. Ernst,et al.  Diffusion Lattice Boltzmann Scheme on a Orthorhombic Lattice , 1999 .

[18]  C. Pozrikidis,et al.  The flow of suspensions in channels: Single files of drops , 1993 .

[19]  Patrick Patrick Anderson,et al.  Diffuse interface modeling of the morphology and rheology of immiscible polymer blends , 2003 .

[20]  Julia M. Yeomans,et al.  Mesoscale simulations: Lattice Boltzmann and particle algorithms , 2006 .

[21]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  Thierry Biben,et al.  An advected-field approach to the dynamics of fluid interfaces , 2003 .

[23]  Yeomans,et al.  Lattice Boltzmann simulations of liquid-gas and binary fluid systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  Peter V. Coveney,et al.  Inverse Chapman–Enskog Derivation of the Thermohydrodynamic Lattice-BGK Model for the Ideal Gas , 1998, comp-gas/9810001.

[25]  E. Bruce Nauman,et al.  Nonlinear diffusion and phase separation , 2001 .

[26]  D. J. Torres,et al.  On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method , 2002 .

[27]  Patrick Patrick Anderson,et al.  On scaling of diffuse-interface models , 2006 .

[28]  R. V. D. Sman,et al.  Diffuse interface model of surfactant adsorption onto flat and droplet interfaces , 2006 .

[29]  M Maykel Verschueren,et al.  A diffuse-interface model for structure development in flow , 1999 .

[30]  R. V. D. Sman,et al.  Analysis of droplet formation and interactions during cross-flow membrane emulsification , 2002 .

[31]  R. Boom,et al.  Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[32]  James J. Feng,et al.  A diffuse-interface method for simulating two-phase flows of complex fluids , 2004, Journal of Fluid Mechanics.

[33]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[34]  A. Lamura,et al.  A lattice Boltzmann model of ternary fluid mixtures , 1995 .

[35]  Luo Li-Shi,et al.  Theory of the lattice Boltzmann method: Lattice Boltzmann models for non-ideal gases , 2001 .

[36]  Héctor D. Ceniceros,et al.  Computation of multiphase systems with phase field models , 2002 .

[37]  M E Cates,et al.  Role of inertia in two-dimensional deformation and breakdown of a droplet. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Remko M. Boom,et al.  Droplet formation in a T-shaped microchannel junction: A model system for membrane emulsification , 2005 .

[39]  M E Cates,et al.  Physical and computational scaling issues in lattice Boltzmann simulations of binary fluid mixtures , 2004, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  Howard A. Stone,et al.  Dynamics of Drop Deformation and Breakup in Viscous Fluids , 1994 .

[41]  R. Sman Galilean invariant lattice Boltzmann scheme for natural convection on square and rectangular lattices. , 2006 .

[42]  Alexander J. Wagner,et al.  EFFECT OF SHEAR ON DROPLETS IN A BINARY MIXTURE , 1997 .