Benford's law, values of L-functions and the 3x+1 problem

We show the leading digits of a variety of systems satisfying certain conditions follow Benford's Law. For each system proving this involves two main ingredients. One is a structure theorem of the limiting distribution, specific to the system. The other is a general technique of applying Poisson Summation to the limiting distribution. We show the distribution of values of L-functions near the central line and (in some sense) the iterates of the 3x+1 Problem are Benford.

[1]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[2]  M. Schäl Karatzas, I. und St. E. Shreve: Brownian motion and stochastic calculus. (Graduate Texts in Mathematics, 113) , 1989 .

[3]  Yakov G. Sinai,et al.  Structure Theorem for (d, g, h)-Maps , 2002 .

[4]  On Small Values of the Riemann Zeta‐Function on the Critical Line and Gaps Between Zeros , 2003, math/0312097.

[5]  A. Wintner,et al.  Distribution functions and the Riemann zeta function , 1935 .

[6]  Theodore P. Hill The First Digit Phenomenon , 1998 .

[7]  Elias M. Stein,et al.  Fourier Analysis: An Introduction , 2003 .

[8]  Wenzhi Luo Zeros of Hecke L-functions associated with cusp forms , 1995 .

[9]  Jeff Boyle,et al.  An Application of Fourier Series to the Most Significant Digit Problem , 1994 .

[10]  Mark J. Nigrini,et al.  Digital analysis and the reduction of auditor litigation risk , 1996 .

[11]  Peter R. Turner The Distribution of Leading Significant Digits , 1982 .

[12]  Jeffrey C. Lagarias,et al.  The 3x + 1 Problem and its Generalizations , 1985 .

[13]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[14]  H. Iwaniec,et al.  Analytic Number Theory , 2004 .

[15]  H. Robbins On the equidistribution of sums of independent random variables , 1953 .

[16]  Joseph H. Silverman,et al.  Diophantine Geometry: An Introduction , 2000, The Mathematical Gazette.

[17]  Paul Levy,et al.  L'addition des variables aléatoires définies sur une circonférence , 1939 .

[18]  T. Hill A Statistical Derivation of the Significant-Digit Law , 1995 .

[19]  Roger S. Pinkham,et al.  On the Distribution of First Significant Digits , 1961 .

[20]  M. Nigrini,et al.  The Use of Benford's Law as an Aid in Analytical Procedures , 1997 .

[21]  J. Littlewood,et al.  Contributions to the theory of the riemann zeta-function and the theory of the distribution of primes , 1916 .

[22]  E. Ley On the Peculiar Distribution of the U.S. Stock Indexes' Digits , 1996 .

[23]  P. Schatte On the Asymptotic Uniform Distribution of Sums Reduced mod 1 , 1984 .

[24]  On the Asymptotic Logarithmic Distribution of the Floating‐Point Mantissas of Sums , 1986 .

[25]  Antanas Laurinčikas,et al.  Limit Theorems for the Riemann Zeta-Function , 1995 .

[26]  N. Snaith,et al.  Random Matrix Theory and ζ(1/2+it) , 2000 .

[27]  B. Jessen,et al.  On the Distribution of the Values of the Riemann Zeta Function , 1936 .

[28]  D. Ridout Rational approximations to algebraic numbers , 1957 .

[29]  P. Diaconis The Distribution of Leading Digits and Uniform Distribution Mod 1 , 1977 .

[30]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[31]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[32]  J. Pitman,et al.  Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions , 1999, math/9912170.

[33]  R. M. Loynes,et al.  Some results in the probabilistic theory of asymptotic uniform distribution modulo 1 , 1973 .

[34]  K. F. Roth,et al.  Rational approximations to algebraic numbers , 1955 .

[35]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[36]  Leonid A. Bunimovich,et al.  One-dimensional dynamical systems and Benford's law , 2004 .

[37]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[38]  Peter Schatte On Sums Modulo 2π of Independent Random Variables , 1983 .

[39]  Jeffrey C. Lagarias,et al.  The 3x + 1 Problem: an Annotated Bibliography , 2006 .

[40]  H. Sakamoto,et al.  On the Distributions of the Product and the Quotient of the Independent and Uniformly Distributed Random Variables , 1943 .

[41]  Eric Gaudron,et al.  The rational case in the theory of linear forms in logarithms , 2004 .

[42]  J. Lagarias,et al.  Benford's Law for the 3x + 1 Function , 2005, math/0509175.

[43]  Prime Numbers and Brownian Motion , 1973 .

[44]  Jean-Pierre Serre A Course in Arithmetic , 1973 .

[45]  Simon Newcomb,et al.  Note on the Frequency of Use of the Different Digits in Natural Numbers , 1881 .

[46]  P. Sarnak,et al.  Zeroes of zeta functions and symmetry , 1999 .

[47]  M. Springer,et al.  The Distribution of Products of Independent Random Variables , 1966 .