Benford's law, values of L-functions and the 3x+1 problem
暂无分享,去创建一个
[1] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[2] M. Schäl. Karatzas, I. und St. E. Shreve: Brownian motion and stochastic calculus. (Graduate Texts in Mathematics, 113) , 1989 .
[3] Yakov G. Sinai,et al. Structure Theorem for (d, g, h)-Maps , 2002 .
[4] On Small Values of the Riemann Zeta‐Function on the Critical Line and Gaps Between Zeros , 2003, math/0312097.
[5] A. Wintner,et al. Distribution functions and the Riemann zeta function , 1935 .
[6] Theodore P. Hill. The First Digit Phenomenon , 1998 .
[7] Elias M. Stein,et al. Fourier Analysis: An Introduction , 2003 .
[8] Wenzhi Luo. Zeros of Hecke L-functions associated with cusp forms , 1995 .
[9] Jeff Boyle,et al. An Application of Fourier Series to the Most Significant Digit Problem , 1994 .
[10] Mark J. Nigrini,et al. Digital analysis and the reduction of auditor litigation risk , 1996 .
[11] Peter R. Turner. The Distribution of Leading Significant Digits , 1982 .
[12] Jeffrey C. Lagarias,et al. The 3x + 1 Problem and its Generalizations , 1985 .
[13] Donald Ervin Knuth,et al. The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .
[14] H. Iwaniec,et al. Analytic Number Theory , 2004 .
[15] H. Robbins. On the equidistribution of sums of independent random variables , 1953 .
[16] Joseph H. Silverman,et al. Diophantine Geometry: An Introduction , 2000, The Mathematical Gazette.
[17] Paul Levy,et al. L'addition des variables aléatoires définies sur une circonférence , 1939 .
[18] T. Hill. A Statistical Derivation of the Significant-Digit Law , 1995 .
[19] Roger S. Pinkham,et al. On the Distribution of First Significant Digits , 1961 .
[20] M. Nigrini,et al. The Use of Benford's Law as an Aid in Analytical Procedures , 1997 .
[21] J. Littlewood,et al. Contributions to the theory of the riemann zeta-function and the theory of the distribution of primes , 1916 .
[22] E. Ley. On the Peculiar Distribution of the U.S. Stock Indexes' Digits , 1996 .
[23] P. Schatte. On the Asymptotic Uniform Distribution of Sums Reduced mod 1 , 1984 .
[24] On the Asymptotic Logarithmic Distribution of the Floating‐Point Mantissas of Sums , 1986 .
[25] Antanas Laurinčikas,et al. Limit Theorems for the Riemann Zeta-Function , 1995 .
[26] N. Snaith,et al. Random Matrix Theory and ζ(1/2+it) , 2000 .
[27] B. Jessen,et al. On the Distribution of the Values of the Riemann Zeta Function , 1936 .
[28] D. Ridout. Rational approximations to algebraic numbers , 1957 .
[29] P. Diaconis. The Distribution of Leading Digits and Uniform Distribution Mod 1 , 1977 .
[30] Ioannis Karatzas,et al. Brownian Motion and Stochastic Calculus , 1987 .
[31] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[32] J. Pitman,et al. Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions , 1999, math/9912170.
[33] R. M. Loynes,et al. Some results in the probabilistic theory of asymptotic uniform distribution modulo 1 , 1973 .
[34] K. F. Roth,et al. Rational approximations to algebraic numbers , 1955 .
[35] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[36] Leonid A. Bunimovich,et al. One-dimensional dynamical systems and Benford's law , 2004 .
[37] David Thomas,et al. The Art in Computer Programming , 2001 .
[38] Peter Schatte. On Sums Modulo 2π of Independent Random Variables , 1983 .
[39] Jeffrey C. Lagarias,et al. The 3x + 1 Problem: an Annotated Bibliography , 2006 .
[40] H. Sakamoto,et al. On the Distributions of the Product and the Quotient of the Independent and Uniformly Distributed Random Variables , 1943 .
[41] Eric Gaudron,et al. The rational case in the theory of linear forms in logarithms , 2004 .
[42] J. Lagarias,et al. Benford's Law for the 3x + 1 Function , 2005, math/0509175.
[43] Prime Numbers and Brownian Motion , 1973 .
[44] Jean-Pierre Serre. A Course in Arithmetic , 1973 .
[45] Simon Newcomb,et al. Note on the Frequency of Use of the Different Digits in Natural Numbers , 1881 .
[46] P. Sarnak,et al. Zeroes of zeta functions and symmetry , 1999 .
[47] M. Springer,et al. The Distribution of Products of Independent Random Variables , 1966 .