Anharmonic fluctuations govern the band gap of halide perovskites

We determine the impact of anharmonic thermal vibrations on the fundamental band gap of CsPbBr$_3$, a prototypical model system for the broader class of halide perovskite semiconductors. Through first-principles molecular dynamics and stochastic calculations, we find that anharmonic fluctuations are a key effect in the electronic structure of these materials. We present experimental and theoretical evidence that important characteristics, such as a mildly changing band-gap value across a temperature range that includes phase-transitions, cannot be explained by harmonic phonons thermally perturbing an average crystal structure and symmetry. Instead, the thermal characteristics of the electronic structure are microscopically connected to anharmonic vibrational contributions to the band gap that reach a fairly large magnitude of 450 meV at 425 K.

[1]  P. Erhart,et al.  Limits of the phonon quasi-particle picture at the cubic-to-tetragonal phase transition in halide perovskites , 2023, Communications Physics.

[2]  F. Giustino,et al.  Anharmonic electron-phonon coupling in ultrasoft and locally disordered perovskites , 2023, npj Computational Materials.

[3]  Engineering,et al.  The nature of dynamic local order in CH3NH3PbI3 and CH3NH3PbBr3 , 2023, Joule.

[4]  P. Erhart,et al.  Probing the limits of the phonon quasi-particle picture: The transition from underdamped to overdamped dynamics in CsPbBr3 , 2022, 2211.08197.

[5]  Kenji Watanabe,et al.  Excitons at the Phase Transition of 2D Hybrid Perovskites , 2022, ACS Photonics.

[6]  D. Di,et al.  Transient Suppression of Carrier Mobility Due to Hot Optical Phonons in Lead Bromide Perovskites. , 2022, The journal of physical chemistry letters.

[7]  David T. Limmer,et al.  Nonlocal Screening Dictates the Radiative Lifetimes of Excitations in Lead Halide Perovskites. , 2021, Nano letters.

[8]  C. Gehrmann,et al.  Probing the Disorder Inside the Cubic Unit Cell of Halide Perovskites from First-Principles. , 2021, ACS applied materials & interfaces.

[9]  C. Gehrmann,et al.  Transversal Halide Motion Intensifies Band‐To‐Band Transitions in Halide Perovskites , 2021, Advanced science.

[10]  P. Christianen,et al.  Fröhlich interaction dominated by a single phonon mode in CsPbBr3 , 2021, Nature Communications.

[11]  A. Pasquarello,et al.  Atomic-Level Description of Thermal Fluctuations in Inorganic Lead Halide Perovskites , 2021, The journal of physical chemistry letters.

[12]  D. Reichman,et al.  The Significance of Polarons and Dynamic Disorder in Halide Perovskites , 2021 .

[13]  A. Rappe,et al.  Strongly Anharmonic Octahedral Tilting in Two-Dimensional Hybrid Halide Perovskites , 2021, ACS nano.

[14]  S. Levchenko,et al.  Coherent vibrational dynamics reveals lattice anharmonicity in organic–inorganic halide perovskite nanocrystals , 2021, Nature Communications.

[15]  O. Delaire,et al.  Two-dimensional overdamped fluctuations of the soft perovskite lattice in CsPbBr3 , 2021, Nature Materials.

[16]  D. Cahen,et al.  Defects in halide perovskites: The lattice as a boojum? , 2020, MRS Bulletin.

[17]  G. Mannino,et al.  Temperature-Dependent Optical Band Gap in CsPbBr3, MAPbBr3, and FAPbBr3 Single Crystals , 2020, The journal of physical chemistry letters.

[18]  C. G. Van de Walle,et al.  Correctly Assessing Defect Tolerance in Halide Perovskites , 2020 .

[19]  Jin Zhao,et al.  Soft Lattice and Defect Covalency Rationalize Tolerance of β-CsPbI3 Perovskite Solar Cells to Native Defects. , 2020, Angewandte Chemie.

[20]  J. Even,et al.  Direct evidence of weakly dispersed and strongly anharmonic optical phonons in hybrid perovskites , 2020 .

[21]  Y. Diskin‐Posner,et al.  Anharmonic Lattice Vibrations in Small‐Molecule Organic Semiconductors , 2019, Advanced materials.

[22]  Jiaxun Liu,et al.  Thermal Disorder and Bond Anharmonicity in Cesium Lead Iodide Studied by Neutron Total Scattering and the Reverse Monte Carlo Method , 2019, The Journal of Physical Chemistry C.

[23]  Spain.,et al.  Equal Footing of Thermal Expansion and Electron-Phonon Interaction in the Temperature Dependence of Lead Halide Perovskite Band Gaps. , 2019, The journal of physical chemistry letters.

[24]  W. Fang,et al.  Symmetry Breaking at MAPbI3 Perovskite Grain Boundaries Suppresses Charge Recombination: Time-Domain ab Initio Analysis. , 2019, The journal of physical chemistry letters.

[25]  D. Reichman,et al.  Dynamic emission Stokes shift and liquid-like dielectric solvation of band edge carriers in lead-halide perovskites , 2019, Nature Communications.

[26]  C. Gehrmann,et al.  Dynamic shortening of disorder potentials in anharmonic halide perovskites , 2019, Nature Communications.

[27]  M. Roeffaers,et al.  Indirect tail states formation by thermal-induced polar fluctuations in halide perovskites , 2019, Nature Communications.

[28]  G. Kresse,et al.  Electron–phonon coupling in semiconductors within the GW approximation , 2018, New Journal of Physics.

[29]  A. Kachmar,et al.  Effects of Electron-Phonon Coupling on Electronic Properties of Methylammonium Lead Iodide Perovskites. , 2018, The journal of physical chemistry letters.

[30]  D. Reichman,et al.  How Lattice and Charge Fluctuations Control Carrier Dynamics in Halide Perovskites. , 2018, Nano letters.

[31]  L. Kronik,et al.  Breakdown of the Static Picture of Defect Energetics in Halide Perovskites: The Case of the Br Vacancy in CsPbBr3. , 2018, The journal of physical chemistry letters.

[32]  A. Walsh,et al.  Acoustic phonon lifetimes limit thermal transport in methylammonium lead iodide , 2018, Proceedings of the National Academy of Sciences of the United States of America.

[33]  K. Biswas,et al.  Exploring Polaronic, Excitonic Structures and Luminescence in Cs4PbBr6/CsPbBr3. , 2018, The journal of physical chemistry letters.

[34]  A. Pasquarello,et al.  Predictive Determination of Band Gaps of Inorganic Halide Perovskites. , 2017, The journal of physical chemistry letters.

[35]  A. Walsh,et al.  Spontaneous Octahedral Tilting in the Cubic Inorganic Cesium Halide Perovskites CsSnX3 and CsPbX3 (X = F, Cl, Br, I). , 2017, The journal of physical chemistry letters.

[36]  L. Kronik,et al.  Light-induced picosecond rotational disordering of the inorganic sublattice in hybrid perovskites , 2017, Science Advances.

[37]  S. Poncé,et al.  Temperature Dependence of the Energy Levels of Methylammonium Lead Iodide Perovskite from First-Principles. , 2016, The journal of physical chemistry letters.

[38]  Marcus L. Böhm,et al.  Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization , 2016 .

[39]  P. Ghosh,et al.  Terahertz Conductivity within Colloidal CsPbBr3 Perovskite Nanocrystals: Remarkably High Carrier Mobilities and Large Diffusion Lengths. , 2016, Nano letters.

[40]  Brookhaven National Laboratory,et al.  Direct Observation of Dynamic Symmetry Breaking above Room Temperature in Methylammonium Lead Iodide Perovskite , 2016, 1606.09267.

[41]  Aldona Sashchiuk,et al.  Hydrogen-like Wannier-Mott Excitons in Single Crystal of Methylammonium Lead Bromide Perovskite. , 2016, ACS nano.

[42]  Feliciano Giustino,et al.  Electron–phonon coupling in hybrid lead halide perovskites , 2016, Nature Communications.

[43]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[44]  T. Heinz,et al.  Population inversion and giant bandgap renormalization in atomically thin WS2 layers , 2015, Nature Photonics.

[45]  Jürg Hutter,et al.  Thermal effects on CH3NH3PbI3 perovskite from Ab initio molecular dynamics simulations , 2015 .

[46]  T. Bučko,et al.  Extending the applicability of the Tkatchenko-Scheffler dispersion correction via iterative Hirshfeld partitioning. , 2014, The Journal of chemical physics.

[47]  P. Umari,et al.  Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. , 2014, Nano letters.

[48]  T. Bučko,et al.  Improved Density Dependent Correction for the Description of London Dispersion Forces. , 2013, Journal of chemical theory and computation.

[49]  Zhifu Liu,et al.  Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection , 2013 .

[50]  J. J. Wang,et al.  Temperature dependence of the band gap of perovskite semiconductor compound CsSnI3 , 2011 .

[51]  Iftikhar Ahmad,et al.  First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M¼Cl, Br, I) , 2011 .

[52]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[53]  David B Mitzi,et al.  Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. , 2005, Inorganic chemistry.

[54]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[55]  Albrecht Poglitsch,et al.  Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy , 1987 .

[56]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[57]  W. Marsden I and J , 2012 .

[58]  P. Würfel,et al.  Physics of solar cells : from basic principles to advanced concepts , 2009 .