Chlamydomonas reinhardtii at the Crossroads of Genomics

Simple, experimentally tractable systems such Saccharomyces cerevisiae, Chlamydomonas reinhardtii, and Arabidopsis thaliana are powerful models for dissecting basic biological processes. The unicellular green alga C. reinhardtii is amenable to a diversity of genetic and molecular manipulations. This haploid organism grows rapidly in axenic cultures, on both solid and liquid medium, with a sexual cycle that can be precisely controlled. Vegetative diploids are readily selected through the use of complementing auxotrophic markers and are useful for analyses of deleterious recessive alleles. These genetic features have permitted the generation and characterization of a wealth of mutants with lesions in structural, metabolic and regulatory genes. Another important feature of C. reinhardtii is that it has the capacity to grow with light as a sole energy source (photoautotrophic growth) or on acetate in the dark (heterotrophically), facilitating detailed examination of genes and proteins critical for photosynthetic or respiratory function. Other important topics being studied using C. reinhardtii, many of which have direct application to elucidation of protein function in animal cells (26), include flagellum structure and assembly, cell wall biogenesis, gametogenesis, mating, phototaxis, and adaptive responses to light and nutrient environments (32, 44). Some of these studies are directly relevant to applied problems in biology, including the production of clean, solar-generated energy in the form of H2, and bioremediation of heavy metal wastes. Recent years have seen the development of a molecular toolkit for C. reinhardtii (42, 44, 66, 98, 99). Selectable markers are available for nuclear and chloroplast transformation (4, 5, 12, 13, 30, 44, 56, 82). The Arg7 (22) and Nit1 (30) genes are routinely used to rescue recessive mutant phenotypes. The bacterial ble gene (which codes for zeocin resistance [70, 112]) is an easily scored marker for nuclear transformation, and the bacterial aadA gene (which codes for spectinomycin and streptomycin resistance) is a reliable marker for chloroplast transformation (39). Nuclear transformation can be achieved by

[1]  E. H. Harris,et al.  Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic characterization of integration events. , 1990, Genetics.

[2]  A. Grossman,et al.  High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. , 1998, Genetics.

[3]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[4]  D. Warshawsky,et al.  Mapping protein-DNA interactions using in vivo footprinting. , 1999, Methods in molecular biology.

[5]  S. Purton,et al.  Analysis of the proposed Fe-SX binding region of Photosystem 1 by site directed mutation of PsaA in Chlamydomonas reinhardtii , 1995, Photosynthesis Research.

[6]  J. Maul,et al.  Retracted: The Chlamydomonas reinhardtii Organellar Genomes Respond Transcriptionally and Post-Transcriptionally to Abiotic Stimuli , 2002, The Plant Cell Online.

[7]  E. H. Harris,et al.  Isolation and characterization of a mutant protoporphyrinogen oxidase gene from Chlamydomonas reinhardtii conferring resistance to porphyric herbicides , 1998, Plant Molecular Biology.

[8]  M. Wu,et al.  Insertion mutagenesis of Chlamydomonas reinhardtii by electroporation and heterologous DNA. , 1995, Biochemistry and molecular biology international.

[9]  S. Mayfield,et al.  Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[10]  E. Golemis,et al.  Using the yeast interaction trap and other two-hybrid-based approaches to study protein-protein interactions. , 2001, Methods.

[11]  AC Tose Cell , 1993, Cell.

[12]  Govindjee,et al.  Modification of the photosystem II acceptor side function in a D1 mutant (arginine-269-glycine) of Chlamydomonas reinhardti. , 1997, Biochimica et biophysica acta.

[13]  G. Schuster,et al.  Evidence for in vivo modulation of chloroplast RNA stability by 3′-UTR homopolymeric tails in Chlamydomonas reinhardtii , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  K. Kindle High-frequency nuclear transformation of Chlamydomonas reinhardtii. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[15]  P. Lefebvre,et al.  Development and characterization of genome-wide single nucleotide polymorphism markers in the green alga Chlamydomonas reinhardtii. , 2001, Plant physiology.

[16]  P. Lefebvre,et al.  Targeted disruption of the NIT8 gene in Chlamydomonas reinhardtii , 1995, Molecular and cellular biology.

[17]  J. Erickson,et al.  Characterization of photosystem II mutants of Chlamydomonas reinhardii lacking the psbA gene , 1986, Plant Molecular Biology.

[18]  J. Rochaix,et al.  A Mutant Strain of Chlamydomonas reinhardtii Lacking the Chloroplast Photosystem II psbI Gene Grows Photoautotrophically (*) , 1995, The Journal of Biological Chemistry.

[19]  A. Grossman,et al.  Expression of the arylsulfatase gene from the beta 2-tubulin promoter in Chlamydomonas reinhardtii. , 1992, Nucleic acids research.

[20]  Oleg A. Sineshchekov,et al.  Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Rochaix,et al.  The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. , 1989, The EMBO journal.

[22]  P. Bennoun Chlororespiration revisited: Mitochondrial-plastid interactions in Chlamydomonas , 1994 .

[23]  F. Wollman,et al.  The assembly of cytochrome b6/f complexes: an approach using genetic transformation of the green alga Chlamydomonas reinhardtii. , 1994, The EMBO journal.

[24]  V. Orlando,et al.  Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. , 2000, Trends in biochemical sciences.

[25]  J. Rochaix,et al.  Targeted mutations in the psaC gene of Chlamydomonas reinhardtii: preferential reduction of FB at low temperature is not accompanied by altered electron flow from photosystem I to ferredoxin. , 1997, Biochemistry.

[26]  S. Lewis,et al.  The generic genome browser: a building block for a model organism system database. , 2002, Genome research.

[27]  Donald P. Weeks,et al.  Gene isolation through genomic complementation using an indexed library of Chlamydomonas reinhardtii DNA , 1994, Plant Molecular Biology.

[28]  J. Erickson,et al.  Lack of the D2 protein in a Chlamydomonas reinhardtii psbD mutant affects photosystem II stability and D1 expression , 1986, The EMBO journal.

[29]  S. Mayfield,et al.  Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. , 2002, The Plant journal : for cell and molecular biology.

[30]  Jeff Shrager,et al.  Analysis of light and CO2 regulation in Chlamydomonas reinhardtii using genome-wide approaches , 2004, Photosynthesis Research.

[31]  W. Lubitz,et al.  Site-directed mutations affecting the spectroscopic characteristics and midpoint potential of the primary donor in photosystem I. , 1996, Biochemistry.

[32]  P. Nielsen In vivo footprinting: studies of protein--DNA interactions in gene regulation. , 1989, BioEssays : news and reviews in molecular, cellular and developmental biology.

[33]  S. Yehudai-Resheff,et al.  Polynucleotide Phosphorylase Functions as Both an Exonuclease and a Poly(A) Polymerase in Spinach Chloroplasts , 2001, Molecular and Cellular Biology.

[34]  R. J. Spreitzer,et al.  Directed Mutagenesis of Chloroplast Ribulose-1,5-bisphosphate Carboxylase/Oxygenase , 1996, The Journal of Biological Chemistry.

[35]  Y. Nakamura,et al.  Generation of expressed sequence tags from low-CO2 and high-CO2 adapted cells of Chlamydomonas reinhardtii. , 2000, DNA research : an international journal for rapid publication of reports on genes and genomes.

[36]  A. Grossman,et al.  Sequences controlling transcription of the Chlamydomonas reinhardtii beta 2-tubulin gene after deflagellation and during the cell cycle. , 1994, Molecular and cellular biology.

[37]  N. W. Gillham,et al.  Mutations in nine chloroplast loci of Chlamydomonas affecting different photosynthetic functions. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[38]  P. Lefebvre,et al.  FAR1, a negative regulatory locus required for the repression of the nitrate reductase gene in Chlamydomonas reinhardtii. , 1997, Genetics.

[39]  Jean-David Rochaix,et al.  Complementation of a Chlamydomonas reinhardtii mutant using a genomic cosmid library , 2004, Plant Molecular Biology.

[40]  J. Rochaix,et al.  Photosystem I Is Indispensable for Photoautotrophic Growth, CO2 Fixation, and H2 Photoproduction inChlamydomonas reinhardtii * , 1999, The Journal of Biological Chemistry.

[41]  J. Joung Identifying and modifying protein–DNA and protein–protein interactions using a bacterial two‐hybrid selection system , 2001, Journal of cellular biochemistry. Supplement.

[42]  P. Lefebvre,et al.  Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase , 1989, The Journal of cell biology.

[43]  S. Purton,et al.  Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker , 2000, Molecular and General Genetics MGG.

[44]  E. M. Larson,et al.  Specificity for Activase Is Changed by a Pro-89 to Arg Substitution in the Large Subunit of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase* , 1997, The Journal of Biological Chemistry.

[45]  J. Rochaix,et al.  The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex , 1997, The EMBO journal.

[46]  M. Rahire,et al.  The chloroplast ycf7 (petL) open reading frame of Chlamydomonas reinhardtii encodes a small functionally important subunit of the cytochrome b6f complex. , 1996, The EMBO journal.

[47]  A. Grossman Chlamydomonas reinhardtii and photosynthesis: genetics to genomics. , 2000, Current opinion in plant biology.

[48]  A. Grossman,et al.  Responses to Deficiencies in Macronutrients , 1998 .

[49]  J. Rochaix Chlamydomonas, a model system for studying the assembly and dynamics of photosynthetic complexes , 2002, FEBS letters.

[50]  P. Lefebvre,et al.  The CRY1 gene in Chlamydomonas reinhardtii: structure and use as a dominant selectable marker for nuclear transformation , 1994, Molecular and cellular biology.

[51]  P. Lefebvre,et al.  PF16 encodes a protein with armadillo repeats and localizes to a single microtubule of the central apparatus in Chlamydomonas flagella , 1996, The Journal of cell biology.

[52]  Steven Henikoff,et al.  Targeted screening for induced mutations , 2000, Nature Biotechnology.

[53]  P. Farnham,et al.  Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. , 2002, Methods.

[54]  S. Ruffle,et al.  The 9-kDa phosphoprotein of photosystem II. Generation and characterisation of Chlamydomonas mutants lacking PSII-H and a site-directed mutant lacking the phosphorylation site. , 1998, Biochimica et biophysica acta.

[55]  J. Rochaix Post-transcriptional regulation of chloroplast gene expression in Chlamydomonas reinhardtii , 1996, Plant Molecular Biology.

[56]  P. Hegemann,et al.  A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. , 1999, The Plant journal : for cell and molecular biology.

[57]  G. Pfeifer,et al.  In vivo footprinting using UV light and ligation-mediated PCR. , 2000, Methods in molecular biology.

[58]  D. Weeks,et al.  Intracellular Carbonic Anhydrase Is Essential to Photosynthesis in Chlamydomonas reinhardtii at Atmospheric Levels of CO2 (Demonstration via Genomic Complementation of the High-CO2-Requiring Mutant ca-1) , 1997, Plant physiology.

[59]  G. Schmidt,et al.  Requirement for the H Phosphoprotein in Photosystem II of Chlamydomonas reinhardtii , 1997, Plant physiology.

[60]  D. Ladant,et al.  Two-hybrid systems and their usage in infection biology. , 2002, International journal of medical microbiology : IJMM.

[61]  C. Johnson,et al.  Transcription of CABII is regulated by the biological clock in Chlamydomonas reinhardtii. , 1996, Plant molecular biology.

[62]  A. Grossman,et al.  Sulfur Availability and the SAC1 Gene Control Adenosine Triphosphate Sulfurylase Gene Expression in Chlamydomonas reinhardtii , 1996, Plant physiology.

[63]  Shenglong Wang,et al.  The Chlamydomonas chloroplast clpP gene contains translated large insertion sequences and is essential for cell growth , 1994, Molecular and General Genetics MGG.

[64]  K. Lechtreck,et al.  Centrin deficiency in Chlamydomonas causes defects in basal body replication, segregation and maturation , 2003, Journal of Cell Science.

[65]  M. Fawley,et al.  Variable (CA/GT)n simple sequence repeat DNA in the alga Chlamydomonas , 1997, Plant Molecular Biology.

[66]  P. Lefebvre,et al.  Isolation and characterization of the nitrate reductase structural gene of Chlamydomonas reinhardtii. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[67]  D. Drapier,et al.  Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. , 2002, The Plant journal : for cell and molecular biology.

[68]  Mary E. Cosner,et al.  The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families , 1997, Current Genetics.

[69]  J. Rochaix,et al.  Nuclear and chloroplast mutations affect the synthesis or stability of the chloroplast psbC gene product in Chlamydomonas reinhardtii. , 1989, The EMBO journal.

[70]  Steven Henikoff,et al.  Large-scale discovery of induced point mutations with high-throughput TILLING. , 2003, Genome research.

[71]  R. Loppes,et al.  Expression of the arylsulphatase reporter gene under the control of the nit1 promoter in Chlamydomonas reinhardtii , 1997, Current Genetics.

[72]  M. Goldschmidt-Clermont,et al.  Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker of site-directed transformation of chlamydomonas. , 1991, Nucleic acids research.

[73]  D. R. Stevens,et al.  The bacterial phleomycin resistance geneble as a dominant selectable marker inChlamydomonas , 1996, Molecular and General Genetics MGG.

[74]  J. Rochaix,et al.  Directed chloroplast transformation in Chlamydomonas reinhardtii: insertional inactivation of the psaC gene encoding the iron sulfur protein destabilizes photosystem I. , 1991, The EMBO journal.

[75]  J. Rochaix,et al.  Disruption of the plastid ycf10 open reading frame affects uptake of inorganic carbon in the chloroplast of Chlamydomonas , 1997, The EMBO journal.

[76]  C. Schmidt,et al.  The Deletion of petG in Chlamydomonas reinhardtii Disrupts the Cytochrome bf Complex (*) , 1995, The Journal of Biological Chemistry.

[77]  J. Rochaix,et al.  A large open reading frame (orf1995 ) in the chloroplast DNA of Chlamydomonas reinhardtii encodes an essential protein , 1997, Molecular and General Genetics MGG.

[78]  P. Lefebvre,et al.  Isolation and characterization of a new transposable element in Chlamydomonas reinhardtii , 1998, Plant Molecular Biology.

[79]  T M Klein,et al.  Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. , 1988, Science.

[80]  D. Drapier,et al.  The chloroplast atpA gene cluster in Chlamydomonas reinhardtii. Functional analysis of a polycistronic transcription unit. , 1998, Plant physiology.

[81]  S. Merchant,et al.  Two copper-responsive elements associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators. , 1995, The Plant cell.

[82]  N. W. Gillham,et al.  Cotranscription of the wild-type chloroplast atpE gene encoding the CF1/CF0 epsilon subunit with the 3′ half of the rps7 gene in Chlamydomonas reinhardtii and characterization of frameshift mutations in atpE , 1990, Molecular and General Genetics MGG.

[83]  A. Grossman,et al.  Sulfur economy and cell wall biosynthesis during sulfur limitation of Chlamydomonas reinhardtii. , 2001, Plant physiology.

[84]  J. Rochaix,et al.  Multiple translational control sequences in the 5' leader of the chloroplast psbC mRNA interact with nuclear gene products in Chlamydomonas reinhardtii. , 2003, Genetics.

[85]  J. Suzuki,et al.  Light-independent chlorophyll biosynthesis: involvement of the chloroplast gene chlL (frxC). , 1992, The Plant cell.

[86]  B. Nal,et al.  Location analysis of DNA-bound proteins at the whole-genome level: untangling transcriptional regulatory networks. , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[87]  B. Séraphin,et al.  The tandem affinity purification (TAP) method: a general procedure of protein complex purification. , 2001, Methods.

[88]  A. Grossman,et al.  Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. , 1996, The EMBO journal.

[89]  M. Rahire,et al.  Nonsense mutations in the Chlamydomonas chloroplast gene that codes for the large subunit of ribulosebisphosphate carboxylase/oxygenase. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[90]  J. Rosenbaum,et al.  Rescue of a paralyzed-flagella mutant of Chlamydomonas by transformation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[91]  E. H. Harris,et al.  CHLAMYDOMONAS AS A MODEL ORGANISM. , 2003, Annual review of plant physiology and plant molecular biology.

[92]  J. Rochaix,et al.  Selectable marker recycling in the chloroplast , 1996, Molecular and General Genetics MGG.

[93]  N. W. Gillham,et al.  Site-directed Mutations at Residue 251 of the Photosystem II D1 Protein of Chlamydomonas That Result in a Nonphotosynthetic Phenotype and Impair D1 Synthesis and Accumulation* , 1997, The Journal of Biological Chemistry.

[94]  S. Merchant,et al.  The Plastid-encoded ccsA Gene Is Required for Heme Attachment to Chloroplast c-type Cytochromes (*) , 1996, The Journal of Biological Chemistry.

[95]  P. Lefebvre,et al.  Isolation of the Chlamydomonas regulatory gene NIT2 by transposon tagging. , 1993, Genetics.

[96]  S. Dutcher Chlamydomonas reinhardtii: biological rationale for genomics. , 2000, The Journal of eukaryotic microbiology.

[97]  G. Mosig,et al.  Light affects the structure of Chlamydomonas chloroplast chromosomes. , 1990, Nucleic acids research.

[98]  R. Herrmann,et al.  The Chloroplast Gene ycf9 Encodes a Photosystem II (PSII) Core Subunit, PsbZ, That Participates in PSII Supramolecular Architecture , 2001, The Plant Cell Online.

[99]  J. Barber,et al.  The Chloroplast-encoded α Subunit of Cytochromeb-559 Is Required for Assembly of the Photosystem Two Complex in both the Light and the Dark in Chlamydomonas reinhardtii * , 1998, The Journal of Biological Chemistry.

[100]  A. Grossman,et al.  Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[101]  J. Rochaix,et al.  A large fraction of PsaF is nonfunctional in photosystem I complexes lacking the PsaJ subunit. , 1999, Biochemistry.

[102]  P. Lefebvre,et al.  Molecular Map of the Chlamydomonas reinhardtii Nuclear Genome , 2003, Eukaryotic Cell.

[103]  Robert Eugene Blankenship,et al.  Specific mutation near the primary donor in photosystem I from Chlamydomonas reinhardtii alters the trapping time and spectroscopic properties of P700. , 1997, Biochemistry.

[104]  P. Lefebvre,et al.  Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. , 1993, Genetics.

[105]  J. Rochaix Chlamydomonas reinhardtii as the photosynthetic yeast. , 1995, Annual review of genetics.

[106]  H. Cerutti,et al.  Suppressors of transcriptional transgenic silencing in Chlamydomonas are sensitive to DNA-damaging agents and reactivate transposable elements , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[107]  J M Gauthier,et al.  Protein--protein interaction maps: a lead towards cellular functions. , 2001, Trends in genetics : TIG.

[108]  J. Rochaix,et al.  Post-Transcriptional Regulation of Chloroplast Gene Expression in Chlamydomonas , 1994 .

[109]  V. Lumbreras,et al.  Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron , 1998 .

[110]  K. Kindle,et al.  Small cis-Acting Sequences That Specify Secondary Structures in a Chloroplast mRNA Are Essential for RNA Stability and Translation , 1999, Molecular and Cellular Biology.

[111]  R. J. Spreitzer,et al.  Complementing Substitutions at the Bottom of the Barrel Influence Catalysis and Stability of Ribulose-bisphosphate Carboxylase/Oxygenase* , 1997, The Journal of Biological Chemistry.

[112]  K. Lechtreck,et al.  Analysis of Chlamydomonas SF-assemblin by GFP tagging and expression of antisense constructs. , 2002, Journal of cell science.

[113]  P. Lefebvre,et al.  PF20 gene product contains WD repeats and localizes to the intermicrotubule bridges in Chlamydomonas flagella. , 1997, Molecular biology of the cell.

[114]  Alex Bateman,et al.  The InterPro Database, 2003 brings increased coverage and new features , 2003, Nucleic Acids Res..

[115]  Y. Takahashi,et al.  PsbT Polypeptide Is Required for Efficient Repair of Photodamaged Photosystem II Reaction Center* , 2001, The Journal of Biological Chemistry.

[116]  Terrence S. Furey,et al.  The UCSC Genome Browser Database , 2003, Nucleic Acids Res..

[117]  R. Durbin,et al.  Using GeneWise in the Drosophila annotation experiment. , 2000, Genome research.

[118]  G. Finazzi,et al.  State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. , 1999, Biochimica et biophysica acta.

[119]  S. Henikoff,et al.  Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. , 2000, Plant physiology.

[120]  D. Drapier,et al.  A dominant nuclear mutation in Chlamydomonas identifies a factor controlling chloroplast mRNA stability by acting on the coding region of the atpA transcript. , 2002, The Plant journal : for cell and molecular biology.

[121]  P. Lefebvre,et al.  Genetic analysis of flagellar length control in Chlamydomonas reinhardtii: a new long-flagella locus and extragenic suppressor mutations. , 1998, Genetics.

[122]  W. Majeran,et al.  Evidence for a Role of ClpP in the Degradation of the Chloroplast Cytochrome b6f Complex , 2000, Plant Cell.

[123]  S. P. Holloway,et al.  Renilla luciferase as a vital reporter for chloroplast gene expression in Chlamydomonas , 1999, Molecular and General Genetics MGG.

[124]  J. Rochaix,et al.  A small chloroplast RNA may be required for trans-splicing in chlamydomonas reinhardtii , 1991, Cell.

[125]  Xiang‐Qin Liu,et al.  The unusual rps3‐like orf712 is functionally essential and structurally conserved in Chlamydomonas , 1993, FEBS letters.

[126]  U. Goodenough,et al.  A sex recognition glycoprotein is encoded by the plus mating-type gene fus1 of Chlamydomonas reinhardtii. , 1996, Molecular biology of the cell.

[127]  P. Lefebvre,et al.  Chlamydomonas: The Cell and Its Genomes , 1998 .

[128]  Jeff Shrager,et al.  Chlamydomonas reinhardtii Genome Project. A Guide to the Generation and Use of the cDNA Information1 , 2003, Plant Physiology.

[129]  F. Wollman,et al.  A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. , 1999, The Plant cell.

[130]  J. Erickson,et al.  A chloroplast gene is required for the light‐independent accumulation of chlorophyll in Chlamydomonas reinhardtii. , 1992, The EMBO journal.

[131]  G. Pazour,et al.  The Chlamydomonas reinhardtii ODA3 Gene Encodes a Protein of the Outer Dynein Arm Docking Complex , 1997, The Journal of cell biology.

[132]  S. Dutcher,et al.  Identification of the gene encoding the tryptophan synthase beta-subunit from Chlamydomonas reinhardtii. , 1998, Plant Physiology.

[133]  A. Grossman,et al.  Sac3, an Snf1-like Serine/Threonine Kinase That Positively and Negatively Regulates the Responses of Chlamydomonas to Sulfur Limitation , 1999, Plant Cell.

[134]  N. W. Gillham,et al.  Chloroplast transformation in Chlamydomonas. , 1993, Methods in enzymology.

[135]  J. Rochaix,et al.  The argininosuccinate lyase gene of Chlamydomonas reinhardtii : cloning of the cDNA and its characterization as a selectable shuttle marker , 1999, Molecular and General Genetics MGG.

[136]  J. Rochaix,et al.  Directed disruption of the Chlamydomonas chloroplast psbK gene destabilizes the photosystem II reaction center complex , 1994, Plant Molecular Biology.