Perspectives for high-performance permanent magnets: applications, coercivity, and new materials

[1]  S. Miyashita,et al.  Realization of the thermal equilibrium in inhomogeneous magnetic systems by the Landau-Lifshitz-Gilbert equation with stochastic noise, and its dynamical aspects , 2015, 1507.03075.

[2]  T. Ohkubo,et al.  Structure and chemical compositions of the grain boundary phase in Nd-Fe-B sintered magnets , 2016 .

[3]  Coehoorn Electronic structure and magnetism of transition-metal-stabilized YFe12-xMx intermetallic compounds. , 1990, Physical review. B, Condensed matter.

[4]  Baisheng Zhang,et al.  Magnetic and crystallographic properties of novel Fe‐rich rare‐earth nitrides of the type RTiFe11N1−δ (invited) , 1991 .

[5]  H. Sepehri-Amin,et al.  Coercivity Enhancement of Hot-deformed Nd-Fe-B Magnets by the Eutectic Grain Boundary Diffusion Process , 2016 .

[6]  H. Kino,et al.  Nitrogen as the best interstitial dopant among X =B , C, N, O, and F for strong permanent magnet NdFe 11 Ti X : First-principles study , 2015, 1507.03777.

[7]  O. Eriksson,et al.  Toward Rare-Earth-Free Permanent Magnets: A Combinatorial Approach Exploiting the Possibilities of Modeling, Shape Anisotropy in Elongated Nanoparticles, and Combinatorial Thin-Film Approach , 2015 .

[8]  S. Okamoto,et al.  Temperature-dependent magnetization reversal process and coercivity mechanism in Nd-Fe-B hot-deformed magnets , 2015 .

[9]  H. Kino,et al.  First-principles study on stability and magnetism of NdFe11M and NdFe11MN for M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn , 2016, 1609.07227.

[10]  Kazuhiro Hono,et al.  NdFe12Nx hard-magnetic compound with high magnetization and anisotropy field , 2015 .

[11]  H. Sepehri-Amin,et al.  Coercivity enhancement of hydrogenation–disproportionation–desorption–recombination processed Nd–Fe–B powders by the diffusion of Nd–Cu eutectic alloys , 2010 .

[12]  L. Schultz,et al.  Lattice relaxation studies in strained epitaxial Fe-Co-C films , 2015 .

[13]  T. Yoshioka,et al.  Crystal field parameters with Wannier functions: application to Nd2Fe14B systems , 2015 .

[14]  A. Sakuma,et al.  First principles calculation of crystal field parameter near surfaces of Nd2Fe14B , 2009 .

[15]  H. Sepehri-Amin,et al.  Coercivity of the Nd–Fe–B hot-deformed magnets diffusion-processed with low melting temperature glass forming alloys , 2016 .

[16]  Thomas Schrefl,et al.  Effect of Nd content on the microstructure and coercivity of hot-deformed Nd–Fe–B permanent magnets , 2013 .

[17]  T. Koganezawa,et al.  Fe–Ni composition dependence of magnetic anisotropy in artificially fabricated L1 0-ordered FeNi films , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  H. Sepehri-Amin,et al.  Strategy for high-coercivity Nd–Fe–B magnets , 2012 .

[19]  Takashi Miyake,et al.  Monte Carlo analysis for finite-temperature magnetism of Nd 2 Fe 14 B permanent magnet , 2016, 1606.00333.

[20]  Fähnle,et al.  Full-potential linear-muffin-tin-orbital calculations of the magnetic properties of rare-earth-transition-metal intermetallics. I. Description of the formalism and application to the series RCo5 (R=rare-earth atom). , 1996, Physical review. B, Condensed matter.

[21]  Satoshi Sugimoto,et al.  Current status and recent topics of rare-earth permanent magnets , 2011 .

[22]  Thiel,et al.  Valence-electron contributions to the electric-field gradient in hcp metals and at Gd nuclei in intermetallic compounds with the ThCr2Si2 structure. , 1990, Physical review. B, Condensed matter.

[23]  Akira Kato,et al.  A (Nd, Zr)(Fe, Co)11.5Ti0.5Nx compound as a permanent magnet material , 2014 .

[24]  Dominique Givord,et al.  The physics of coercivity , 2003 .

[25]  T. Ohkubo,et al.  Formation of non-ferromagnetic grain boundary phase in a Ga-doped Nd-rich Nd–Fe–B sintered magnet , 2016 .

[26]  A. Sakuma,et al.  Magnetism of Nd–Fe films as a model of grain boundary phase in Nd–Fe–B permanent magnets , 2015 .

[27]  T. Nishiuchi,et al.  Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy , 2014 .

[28]  Min-Fu Hsieh,et al.  A Review of the Design Issues and Techniques for Radial-Flux Brushless Surface and Internal Rare-Earth Permanent-Magnet Motors , 2011, IEEE Transactions on Industrial Electronics.

[29]  T. Schrefl,et al.  Thermal Activation in Permanent Magnets , 2015, 1603.08365.

[30]  W. E. Wallace,et al.  Rare Earth-Transition metal permanent magnet materials , 1986 .

[31]  Jun Liu,et al.  High-coercivity hot-deformed Nd–Fe–B permanent magnets processed by Nd–Cu eutectic diffusion under expansion constraint , 2014 .

[32]  M. Yano,et al.  Influence of Zr substitution on the stabilization of ThMn12-type (Nd1−αZrα)(Fe0.75Co0.25)11.25Ti0.75N1.2−1.4 (α = 0–0.3) compounds , 2016 .

[33]  David G. Dorrell,et al.  Automotive Electric Propulsion Systems With Reduced or No Permanent Magnets: An Overview , 2014, IEEE Transactions on Industrial Electronics.

[34]  K. Stevens Matrix Elements and Operator Equivalents Connected with the Magnetic Properties of Rare Earth Ions , 1952 .

[35]  Fähnle,et al.  Full-potential linear-muffin-tin-orbital calculations of the magnetic properties of rare-earth-transition-metal intermetallics. III. Gd2Fe17Z3 (Z=C,N,O,F). , 1996, Physical review. B, Condensed matter.

[36]  義信 本蔵,et al.  DyフリーNd-Fe-B系異方性ボンド磁石の開発と小型モータへの応用 , 2012 .

[37]  A. Sakuma The theory of inhomogeneous nucleation in uniaxial ferromagnets , 1990 .

[38]  Yingchang Yang,et al.  Neutron diffraction study of Y(Ti,Fe)12 , 1988 .

[39]  W. James,et al.  Evidence of disordered substitutions in the “Th2Ni17-type” structure. Exact structure determination of the ThNi, YNi and ErCo compounds , 1972 .

[40]  M. Yano,et al.  A new magnet material with ThMn 12 structure: (Nd 1-x Zr x )(Fe 1-y Co y ) 11+z Ti 1 - z N α (α=0.6-1.3) , 2016 .

[41]  D. B. D. Mooij,et al.  Some novel ternary ThMn12-type compounds , 1988 .

[42]  H. Kino,et al.  First-Principles Study of Magnetocrystalline Anisotropy and Magnetization in NdFe12, NdFe11Ti, and NdFe11TiN , 2014 .

[43]  Naoaki Hayashi,et al.  Challenge to the Synthesis of α''-Fe16N2 Compound Nanoparticle with High Saturation Magnetization for Rare Earth Free New Permanent Magnetic Material , 2013 .

[44]  Satoshi Hirosawa,et al.  Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals , 1986 .

[45]  H. Oshima,et al.  Micromagnetic simulation of the orientation dependence of grain boundary properties on the coercivity of Nd-Fe-B sintered magnets , 2016 .

[46]  Tetsuya Nakamura,et al.  Direct observation of ferromagnetism in grain boundary phase of Nd-Fe-B sintered magnet using soft x-ray magnetic circular dichroism , 2014 .

[47]  A. Sakuma,et al.  First principles study on the local magnetic anisotropy near surfaces of Dy2Fe14B and Nd2Fe14B magnets , 2011 .

[48]  M. Sharrock,et al.  Kinetic effects in coercivity measurements , 1981 .

[49]  Relevance of 4f-3d exchange to finite-temperature magnetism of rare-earth permanent magnets: An ab-initio-based spin model approach for NdFe12N , 2015, 1504.06697.

[50]  K. Ohmori,et al.  Injection-molded Sm–Fe–N anisotropic magnets using unsaturated polyester resin , 2006 .

[51]  T. Matsuda,et al.  Magnetism of ultrathin intergranular boundary regions in Nd–Fe–B permanent magnets , 2014 .

[52]  R. Coehoorn First principles band structure calculations for rare earth-transition metal compounds: magnetization, hyperfine parameters and magnetocrystalline anistropy , 1991 .

[53]  M. Sagawa,et al.  Effect of carbon on the coercivity and microstructure in fine-grained Nd–Fe–B sintered magnet , 2015 .

[54]  K Yamazaki,et al.  Effect of eddy-current loss reduction by magnet segmentation in synchronous motors with concentrated windings , 2009, 2009 International Conference on Electrical Machines and Systems.

[55]  H. Sepehri-Amin,et al.  Microstructure and temperature dependent of coercivity of hot-deformed Nd–Fe–B magnets diffusion processed with Pr–Cu alloy , 2015 .

[56]  Masao Yano,et al.  (Sm,Zr)(Fe,Co)11.0-11.5Ti1.0-0.5 compounds as new permanent magnet materials , 2016 .

[57]  Jordi-Roger Riba,et al.  Rare-earth-free propulsion motors for electric vehicles: A technology review , 2016 .

[58]  Yamada,et al.  Crystal-field analysis of the magnetization process in a series of Nd2Fe14B-type compounds. , 1988, Physical Review B (Condensed Matter).

[59]  J. Liu,et al.  Processing of MnBi bulk magnets with enhanced energy product , 2016 .

[60]  T. Shoji,et al.  Observation of spin-wave dispersion in Nd-Fe-B magnets using neutron Brillouin scattering , 2014 .

[61]  Masao Yano,et al.  High-coercivity ultrafine-grained anisotropic Nd–Fe–B magnets processed by hot deformation and the Nd–Cu grain boundary diffusion process , 2013 .

[62]  Kurima Kobayashi,et al.  Effect of nitrogen content on magnetic properties of Sm/sub 2/Fe/sub 17/N/sub x/ (0 , 1992 .

[63]  T. Ohkubo,et al.  Effect of post-sinter annealing on the coercivity and microstructure of Nd-Fe-B permanent magnets , 2009 .

[64]  A. Sakuma,et al.  Model Calculation of Magnetization Reversal Process of Hard Magnet in Nd2Fe14B System , 2011 .

[65]  H. Sepehri-Amin,et al.  Grain boundary and interface chemistry of an Nd–Fe–B-based sintered magnet , 2012 .

[66]  R. Osugi,et al.  Magnetic properties of Fe-rich rare-earth intermetallic compounds with a ThMn12 structure , 1988 .

[67]  S. Hirosawa Current Status of Research and Development toward Permanent Magnets Free from Critical Elements , 2015 .

[68]  Robert W. Lee,et al.  Hot‐pressed neodymium‐iron‐boron magnets , 1985 .

[69]  M. Sagawa,et al.  Analysis of the magnetic hardening mechanism in RE-FeB permanent magnets , 1988 .

[70]  N. Kuwano,et al.  Microstructures and crystallographic orientation of crystalline grains in anisotropic Nd‐Fe‐Co‐B‐(Ga or Zr) magnet powders produced by the hydrogenation‐decomposition‐desorption‐recombination process , 1994 .

[71]  Jochen Barthel,et al.  Perpendicular magnetic anisotropy induced by tetragonal distortion of FeCo alloy films grown on Pd(001). , 2006, Physical review letters.

[72]  Hisao Yamamoto,et al.  Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds , 1984 .

[73]  T. Yoshioka,et al.  First-Principles Calculations of Crystal Field Parameters of Nd Ions Near Surfaces and Interfaces in Nd-Fe-B Magnets , 2014, IEEE Transactions on Magnetics.

[74]  G. Tendeloo,et al.  Correlation between the nanocrystalline Sm(Fe,Mo)12 and its out of equilibrium phase Sm(Fe,Mo)10 , 2014 .

[75]  J. M. D. Coey,et al.  Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in anmonia , 1990 .

[76]  Hutchings POINT CHARGE CALCULATIONS OF ENERGY LEVELS OF MAGNETIC IONS IN CRYSTALLINE ELECTRIC FIELDS. Technical Note 13 , 1963 .

[77]  Dominique Givord,et al.  Magnetic viscosity in Nd-Fe-B sintered magnets , 1987 .