New Directions in Categorical Logic, for Classical, Probabilistic and Quantum Logic

Intuitionistic logic, in which the double negation law ¬¬P = P fails, is domi- nant in categorical logic, notably in topos theory. This paper follows a different direction in which double negation does hold, especially in quantitative logics for probabilistic and quantum systems. The algebraic notions of effect algebra and effect module that emerged in theoretical physics form the cornerstone. It is shown that under mild conditions on a category, its maps of the form X ! 1 + 1 carry such effect module structure, and can be used as predicates. Maps of this form X ! 1 + 1 are identified in many different situa- tions, and capture for instance ordinary subsets, fuzzy predicates in a probabilistic setting, idempotents in a ring, and effects (positive elements below the unit) in a C ∗ -algebra or Hilbert space. In quantum foundations the duality between states and effects (predicates) plays an important role. This duality appears in the form of an adjunction in our categorical setting, where we use maps 1 ! X as states. For such a state ! and a predicate p, the validity probability ! |= p is defined, as an abstract Born rule. It captures many forms of (Boolean or probabilistic) validity known from the literature. Measurement from quantum mechanics is formalised categorically in terms of 'instru- ments', using Luders rule in the quantum case. These instruments are special maps asso- ciated with predicates (more generally, with tests), which perform the act of measurement and may have a side-effect that disturbs the system under observation. This abstract description of side-effects is one of the main achievements of the current approach. It is shown that in the special case of C ∗ -algebras, side-effects appear exclusively in the non- commutative (properly quantum) case. Also, these instruments are used for test operators in a dynamic logic that can be used for reasoning about quantum programs/protocols. The paper describes four successive assumptions, towards a categorical axiomatisation of quantitative logic for probabilistic and quantum systems, in which the above mentioned elements occur.

[1]  Branimir Seselja,et al.  Ω-Lattices , 2017, Fuzzy Sets Syst..

[2]  M. Ozawa Quantum measuring processes of continuous observables , 1984 .

[3]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[4]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[5]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[6]  Prakash Panangaden,et al.  Quantum weakest preconditions , 2005, Mathematical Structures in Computer Science.

[7]  Anders Kock,et al.  Closed categories generated by commutative monads , 1971, Journal of the Australian Mathematical Society.

[8]  Roman Fric,et al.  A Categorical Approach to Probability Theory , 2010, Stud Logica.

[9]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[10]  Aleks Kissinger,et al.  Completely positive projections and biproducts , 2013, QPL.

[11]  Stanley Gudder Examples, problems, and results in effect algebras , 1996 .

[12]  Sylvia Pulmannová,et al.  Representation theorem for convex effect algebras , 1998 .

[13]  Bart Jacobs,et al.  Quantum Logic in Dagger Kernel Categories , 2009, QPL@MFPS.

[14]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[15]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.

[16]  Peter Dybjer,et al.  Intuitionistic Type Theory , 2016 .

[17]  P. Busch,et al.  The quantum theory of measurement , 1991 .

[18]  A. Kock Bilinearity and Cartesian Closed Monads. , 1971 .

[19]  Sam Staton,et al.  Complete Positivity and Natural Representation of Quantum Computations , 2015, MFPS.

[20]  Bart Jacobs,et al.  An Effect-Theoretic Account of Lebesgue Integration , 2015, MFPS.

[21]  D. Dieks Communication by EPR devices , 1982 .

[22]  Bart Jacobs,et al.  Convexity, Duality and Effects , 2010, IFIP TCS.

[23]  D. Foulis,et al.  Effect algebras and unsharp quantum logics , 1994 .

[24]  Prakash Panangaden,et al.  Labelled Markov Processes , 2009 .

[25]  Bart Jacobs,et al.  Dijkstra Monads in Monadic Computation , 2014, CMCS.

[26]  Joseph A. Goguen,et al.  Institutions: abstract model theory for specification and programming , 1992, JACM.

[27]  Dexter Kozen,et al.  A probabilistic PDL , 1983, J. Comput. Syst. Sci..

[28]  Manuela Herman,et al.  Quantum Computing: A Gentle Introduction , 2011 .

[29]  J. Robin B. Cockett,et al.  Introduction to distributive categories , 1993, Mathematical Structures in Computer Science.

[30]  P. Busch Quantum states and generalized observables: a simple proof of Gleason's theorem. , 1999, Physical review letters.

[31]  Bart Jacobs,et al.  Towards a Categorical Account of Conditional Probability , 2013, ArXiv.

[32]  David J. Foulis,et al.  The Transition to Unigroups , 1998 .

[33]  Edsger W. Dijkstra,et al.  Predicate Calculus and Program Semantics , 1989, Texts and Monographs in Computer Science.

[34]  Salvador Elías Venegas-Andraca,et al.  Quantum Walks for Computer Scientists , 2008, Quantum Walks for Computer Scientists.

[35]  Bart Jacobs,et al.  Categorical Logic and Type Theory , 2001, Studies in logic and the foundations of mathematics.

[36]  Esfandiar Haghverdi,et al.  Unique decomposition categories, Geometry of Interaction and combinatory logic , 2000, Mathematical Structures in Computer Science.

[37]  E. Manes,et al.  A triple theoretic construction of compact algebras , 1969 .

[38]  Robert W. J. Furber,et al.  From Kleisli Categories to Commutative C*-algebras: Probabilistic Gelfand Duality , 2013, Log. Methods Comput. Sci..

[39]  Gabriel Nagy,et al.  Sequential quantum measurements , 2001 .

[40]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[41]  Dov M. Gabbay,et al.  Handbook of Quantum Logic and Quantum Structures: Quantum Structures , 2007 .

[42]  Bart Jacobs,et al.  States of Convex Sets , 2015, FoSSaCS.

[43]  Kenta Cho,et al.  Semantics for a Quantum Programming Language by Operator Algebras , 2014, New Generation Computing.

[44]  Jun Tomiyama,et al.  ON THE PROJECTION OF NORM ONE IN W*-ALGEBRAS, III , 1957 .

[45]  A. Gleason Measures on the Closed Subspaces of a Hilbert Space , 1957 .

[46]  Michael A. Arbib,et al.  Algebraic Approaches to Program Semantics , 1986, Texts and Monographs in Computer Science.

[47]  Nicolaas P. Landsman,et al.  Born Rule and its Interpretation , 2009, Compendium of Quantum Physics.

[48]  Bart Jacobs,et al.  Probabilities, distribution monads, and convex categories , 2011, Theor. Comput. Sci..

[49]  Robin Adams,et al.  QPEL: Quantum Program and Effect Language , 2014, QPL.

[50]  Edsger W. Dijkstra,et al.  Guarded commands, nondeterminacy and formal derivation of programs , 1975, Commun. ACM.

[51]  Dusko Pavlovic,et al.  Quantum measurements without sums , 2007 .

[52]  Bart Jacobs,et al.  On Block Structures in Quantum Computation , 2013, MFPS.

[53]  Kenta Cho Total and Partial Computation in Categorical Quantum Foundations , 2015, QPL.

[54]  L. M. M.-T. Theory of Probability , 1929, Nature.

[55]  W. Arveson An Invitation To C*-Algebras , 1976 .

[56]  Bart Jacobs,et al.  Semantics of Weakening and Contraction , 1994, Ann. Pure Appl. Log..

[57]  S. Lane,et al.  Sheaves In Geometry And Logic , 1992 .

[58]  Bengt Nordström,et al.  Programming in Martin-Lo¨f's type theory: an introduction , 1990 .

[59]  Adam Grabowski,et al.  Orthomodular Lattices , 2008, Formaliz. Math..

[60]  Paul Busch,et al.  Lüders theorem for unsharp quantum measurements , 1998, 1304.0054.

[61]  T. Heinosaari,et al.  The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement , 2012 .

[62]  Bart Jacobs,et al.  From Coalgebraic to Monoidal Traces , 2010, CMCS@ETAPS.

[63]  Sylvia Pulmannová,et al.  New trends in quantum structures , 2000 .

[64]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[65]  D. Mundici Advanced Łukasiewicz calculus and MV-algebras , 2011 .

[66]  Bart Jacobs,et al.  The Expectation Monad in Quantum Foundations , 2011, ArXiv.

[67]  S. Abramsky No-Cloning In Categorical Quantum Mechanics , 2009, 0910.2401.

[68]  Dexter Kozen,et al.  Semantics of probabilistic programs , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[69]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[70]  Bart Jacobs,et al.  Relating Operator Spaces via Adjunctions , 2012, ArXiv.

[71]  S. Lack,et al.  Introduction to extensive and distributive categories , 1993 .

[72]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[73]  Michèle Giry,et al.  A categorical approach to probability theory , 1982 .

[74]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[75]  M. Arbib,et al.  Partially additive categories and flow-diagram semantics☆ , 1980 .

[76]  Bart Jacobs,et al.  Coreflections in Algebraic Quantum Logic , 2012 .

[77]  M. Born Quantenmechanik der Stoßvorgänge , 1926 .

[78]  F. Strocchi An introduction to the mathematical structure of quantum mechanics : a short course for mathematicians : lecture notes , 2005 .

[79]  Jonathan M. Smith,et al.  Programming the quantum future , 2015, Commun. ACM.

[80]  Bart Jacobs,et al.  Measurable Spaces and Their Effect Logic , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[81]  Bernhard Beckert,et al.  Dynamic Logic , 2007, The KeY Approach.

[82]  Richard V. Kadison,et al.  A representation theory for commutative topological algebra , 1951 .

[83]  Friedel Weinert,et al.  Compendium of Quantum Physics , 2009 .

[84]  John T. Lewis,et al.  An operational approach to quantum probability , 1970 .

[85]  F. Strocchi,et al.  An Introduction To The Mathematical Structure Of Quantum Mechanics , 2008 .

[86]  Mathys Rennela,et al.  Towards a Quantum Domain Theory: Order-enrichment and Fixpoints in W*-algebras , 2014, MFPS.

[87]  T. Heinosaari,et al.  The Mathematical Language of Quantum Theory , 2012 .

[88]  Bart Jacobs,et al.  A Recipe for State-and-Effect Triangles , 2017, Log. Methods Comput. Sci..

[89]  Bas Spitters,et al.  Intuitionistic Quantum Logic of an n-level System , 2009, Foundations of Physics.

[90]  I. Moerdijk,et al.  Sheaves in geometry and logic: a first introduction to topos theory , 1992 .

[91]  W. Marsden I and J , 2012 .

[92]  Alexandru Baltag,et al.  LQP: the dynamic logic of quantum information , 2006, Mathematical Structures in Computer Science.

[93]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[94]  Robert W. Spekkens,et al.  Foundations of Quantum Mechanics , 2007 .

[95]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[97]  Bengt Nordström,et al.  Programming in Martin-Löf's Type Theory , 1990 .

[98]  Steve Awodey,et al.  Category Theory , 2006 .

[99]  Bas Spitters,et al.  Mathematical Physics A Topos for Algebraic Quantum Theory , 2009 .

[100]  Bart Jacobs Coalgebraic Walks, in Quantum and Turing Computation , 2011, FoSSaCS.

[101]  C. J. Isham,et al.  Topos Perspective on the Kochen-Specker Theorem: I. Quantum States as Generalized Valuations , 1998, quant-ph/9803055.

[102]  Richard J. Greechie,et al.  Sequential products on effect algebras , 2002 .

[103]  P. Halmos Introduction to Hilbert Space: And the Theory of Spectral Multiplicity , 1998 .

[104]  M. H. Stone Postulates for the barycentric calculus , 1949 .

[105]  Sam Staton,et al.  Algebraic Effects, Linearity, and Quantum Programming Languages , 2015, POPL.

[106]  Bart Jacobs,et al.  Quotient-Comprehension Chains , 2015, ArXiv.

[107]  Bart Jacobs,et al.  Dijkstra and Hoare monads in monadic computation , 2015, Theor. Comput. Sci..

[108]  Roberto Giuntini,et al.  Toward a formal language for unsharp properties , 1989 .

[109]  Nicolaas P. Landsman,et al.  Algebraic Quantum Mechanics , 2009, Compendium of Quantum Physics.

[110]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.