A Survey on Network Embedding

Network embedding assigns nodes in a network to low-dimensional representations and effectively preserves the network structure. Recently, a significant amount of progresses have been made toward this emerging network analysis paradigm. In this survey, we focus on categorizing and then reviewing the current development on network embedding methods, and point out its future research directions. We first summarize the motivation of network embedding. We discuss the classical graph embedding algorithms and their relationship with network embedding. Afterwards and primarily, we provide a comprehensive overview of a large number of network embedding methods in a systematic manner, covering the structure- and property-preserving network embedding methods, the network embedding methods with side information, and the advanced information preserving network embedding methods. Moreover, several evaluation approaches for network embedding and some useful online resources, including the network data sets and softwares, are reviewed, too. Finally, we discuss the framework of exploiting these network embedding methods to build an effective system and point out some potential future directions.

[1]  Philip S. Yu,et al.  PathSim , 2011, Proc. VLDB Endow..

[2]  Lada A. Adamic,et al.  Friends and neighbors on the Web , 2003, Soc. Networks.

[3]  Christos Faloutsos,et al.  Fast, Warped Graph Embedding: Unifying Framework and One-Click Algorithm , 2017, ArXiv.

[4]  David M. Blei,et al.  Relational Topic Models for Document Networks , 2009, AISTATS.

[5]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[6]  Jian Dong,et al.  Automatic Detection of Rumor on Social Network , 2015, NLPCC.

[7]  Wray L. Buntine,et al.  Bibliographic Analysis with the Citation Network Topic Model , 2016, ACML.

[8]  Deli Zhao,et al.  Network Representation Learning with Rich Text Information , 2015, IJCAI.

[9]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[10]  Jiang Guo,et al.  A General Framework for Content-enhanced Network Representation Learning , 2016, ArXiv.

[11]  Ludovic Denoyer,et al.  Learning latent representations of nodes for classifying in heterogeneous social networks , 2014, WSDM.

[12]  F. Harary,et al.  STRUCTURAL BALANCE: A GENERALIZATION OF HEIDER'S THEORY1 , 1977 .

[13]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[14]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[15]  R. Burt Structural Holes and Good Ideas1 , 2004, American Journal of Sociology.

[16]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[17]  Charu C. Aggarwal,et al.  Heterogeneous Network Embedding via Deep Architectures , 2015, KDD.

[18]  Lise Getoor,et al.  Link mining: a survey , 2005, SKDD.

[19]  Chengqi Zhang,et al.  Tri-Party Deep Network Representation , 2016, IJCAI.

[20]  Cécile Favre,et al.  Information diffusion in online social networks: a survey , 2013, SGMD.

[21]  Kara Dolinski,et al.  The BioGRID Interaction Database: 2008 update , 2008, Nucleic Acids Res..

[22]  Pinar Yanardag,et al.  Deep Graph Kernels , 2015, KDD.

[23]  Jon Kleinberg,et al.  The link prediction problem for social networks , 2003, CIKM '03.

[24]  Ludovic Denoyer,et al.  Learning social network embeddings for predicting information diffusion , 2014, WSDM.

[25]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[26]  Linyuan Lu,et al.  Link Prediction in Complex Networks: A Survey , 2010, ArXiv.

[27]  Michal Pilipczuk,et al.  Sitting Closer to Friends than Enemies, Revisited , 2014, Theory of Computing Systems.

[28]  Li Fei-Fei,et al.  End-to-End Learning of Action Detection from Frame Glimpses in Videos , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Xiaoming Fu,et al.  Mining triadic closure patterns in social networks , 2014, WWW.

[30]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[31]  Michèle Vergne,et al.  Heat Kernels and Dirac Operators: Grundlehren 298 , 1992 .

[32]  Huan Liu,et al.  Scalable learning of collective behavior based on sparse social dimensions , 2009, CIKM.

[33]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[34]  Leo Katz,et al.  A new status index derived from sociometric analysis , 1953 .

[35]  Jun Wang,et al.  Non-transitive Hashing with Latent Similarity Components , 2015, KDD.

[36]  Mathias Niepert,et al.  Learning Convolutional Neural Networks for Graphs , 2016, ICML.

[37]  Philip S. Yu,et al.  Cross View Link Prediction by Learning Noise-resilient Representation Consensus , 2017, WWW.

[38]  Amin Vahdat,et al.  Hyperbolic Geometry of Complex Networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Xiang Li,et al.  Meta Structure: Computing Relevance in Large Heterogeneous Information Networks , 2016, KDD.

[40]  Zhiyuan Liu,et al.  Max-Margin DeepWalk: Discriminative Learning of Network Representation , 2016, IJCAI.

[41]  Mingzhe Wang,et al.  LINE: Large-scale Information Network Embedding , 2015, WWW.

[42]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[43]  Xiao Huang,et al.  Accelerated Attributed Network Embedding , 2017, SDM.

[44]  Eunsoo Seo,et al.  Identifying rumors and their sources in social networks , 2012, Defense + Commercial Sensing.

[45]  Ying Wang,et al.  Algorithms for Large, Sparse Network Alignment Problems , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[46]  Jian Pei,et al.  Asymmetric Transitivity Preserving Graph Embedding , 2016, KDD.

[47]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[48]  Jure Leskovec,et al.  Higher-order organization of complex networks , 2016, Science.

[49]  Huan Liu,et al.  Relational learning via latent social dimensions , 2009, KDD.

[50]  K. Selçuk Candan,et al.  How Does the Data Sampling Strategy Impact the Discovery of Information Diffusion in Social Media? , 2010, ICWSM.

[51]  Xiao Huang,et al.  Label Informed Attributed Network Embedding , 2017, WSDM.

[52]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[53]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..

[54]  Nikos Mamoulis,et al.  Heterogeneous Information Network Embedding for Meta Path based Proximity , 2017, ArXiv.

[55]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[56]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[57]  Jie Tang,et al.  Inferring social ties across heterogenous networks , 2012, WSDM '12.

[58]  Tat-Seng Chua,et al.  NUS-WIDE: a real-world web image database from National University of Singapore , 2009, CIVR '09.

[59]  Praveen Paritosh,et al.  Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.

[60]  Yun Fu,et al.  Graph Embedding for Pattern Analysis , 2012 .

[61]  Mason A. Porter,et al.  Social Structure of Facebook Networks , 2011, ArXiv.

[62]  Wei Lu,et al.  Deep Neural Networks for Learning Graph Representations , 2016, AAAI.

[63]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[64]  Nagarajan Natarajan,et al.  Inductive matrix completion for predicting gene–disease associations , 2014, Bioinform..

[65]  Yizhou Sun,et al.  Task-Guided and Path-Augmented Heterogeneous Network Embedding for Author Identification , 2016, WSDM.

[66]  Jure Leskovec,et al.  {SNAP Datasets}: {Stanford} Large Network Dataset Collection , 2014 .

[67]  Charu C. Aggarwal,et al.  An embedding approach to anomaly detection , 2016, 2016 IEEE 32nd International Conference on Data Engineering (ICDE).

[68]  Philip S. Yu,et al.  Embedding of Embedding (EOE): Joint Embedding for Coupled Heterogeneous Networks , 2017, WSDM.

[69]  Shuicheng Yan,et al.  Graph embedding: a general framework for dimensionality reduction , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[70]  Lise Getoor,et al.  Collective Classification in Network Data , 2008, AI Mag..

[71]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[72]  Andrew McCallum,et al.  Automating the Construction of Internet Portals with Machine Learning , 2000, Information Retrieval.

[73]  Enhong Chen,et al.  Learning Deep Representations for Graph Clustering , 2014, AAAI.

[74]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[75]  Charu C. Aggarwal,et al.  Signed Network Embedding in Social Media , 2017, SDM.

[76]  M. Saunders,et al.  Towards a Generalized Singular Value Decomposition , 1981 .

[77]  Omer Levy,et al.  Neural Word Embedding as Implicit Matrix Factorization , 2014, NIPS.

[78]  Dilek Z. Hakkani-Tür,et al.  End-to-end joint learning of natural language understanding and dialogue manager , 2016, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[79]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[80]  Qiongkai Xu,et al.  GraRep: Learning Graph Representations with Global Structural Information , 2015, CIKM.

[81]  Wenwu Zhu,et al.  Structural Deep Network Embedding , 2016, KDD.

[82]  Bruce W. Suter,et al.  The multilayer perceptron as an approximation to a Bayes optimal discriminant function , 1990, IEEE Trans. Neural Networks.

[83]  Jie Tang,et al.  ArnetMiner: extraction and mining of academic social networks , 2008, KDD.

[84]  Lukás Burget,et al.  Recurrent neural network based language model , 2010, INTERSPEECH.

[85]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[86]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[87]  Xiaolong Jin,et al.  Predict Anchor Links across Social Networks via an Embedding Approach , 2016, IJCAI.

[88]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[89]  Cheng Li,et al.  DeepCas: An End-to-end Predictor of Information Cascades , 2016, WWW.

[90]  Jian Pei,et al.  Community Preserving Network Embedding , 2017, AAAI.

[91]  Danai Koutra,et al.  Graph based anomaly detection and description: a survey , 2014, Data Mining and Knowledge Discovery.

[92]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[93]  Xiaojun Wu,et al.  Graph Regularized Nonnegative Matrix Factorization for Data Representation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[94]  Christos Faloutsos,et al.  Graph evolution: Densification and shrinking diameters , 2006, TKDD.

[95]  Hady Wirawan Lauw,et al.  Probabilistic Latent Document Network Embedding , 2014, 2014 IEEE International Conference on Data Mining.