Finite element superplastic forming (FE‐SPF) of patient‐specific maxillofacial prostheses

This paper describes the application of superplastic forming (SPF) technology to the manufacturing of maxillofacial prostheses for human implants. A combined numerical/experimental methodology is explained in detail whereby initial patient-specific data are collected in the form of computed tomography/magnetic resonance imaging scans and a final titanium alloy Ti-6A1-4V (suitably selected for bio-compatibility and osseo-integration) prosthesis is obtained for subsequent implantation into the damaged area of the patient. Various aspects ranging from the computational challenges (i.e. scanning technology, mesh generation, the finite element incremental flow formulation, pressure–time cycle) to the experimental/medical aspects (i.e. SPF laboratory conditions, patient data, SPF patient-specific process, medical feedback) will be discussed. A cranioplasty prosthesis and an orbital floor prosthesis are presented in order to show the robustness and applicability of the methodology. Copyright © 2009 John Wiley & Sons, Ltd.

[1]  J. A. García de Marcos,et al.  Orbital floor fracture and emphysema after nose blowing , 2008, Oral and Maxillofacial Surgery.

[2]  R Said,et al.  Computer Simulation of Superplastic Forming in Restorative Dentistry , 2004 .

[3]  R. D. Wood,et al.  Pressure-control algorithms for the numerical simulation of superplastic forming , 1994 .

[4]  Antonio J. Gil,et al.  Simulating superplastic forming , 2006 .

[5]  A D Linney,et al.  Validation of computer-assisted manufacture of titanium plates for cranioplasty. , 1999, International journal of oral and maxillofacial surgery.

[6]  K. A. Padmanabhan,et al.  Superplastic Flow: Phenomenology and Mechanics , 2001 .

[7]  Javier Bonet,et al.  The incremental flow formulation for the numerical analysis of plane stress and thin sheet viscous forming processes , 1994 .

[8]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[9]  R. D. Wood,et al.  Numerical simulation of the superplastic forming of dental and medical prostheses , 2002, Biomechanics and modeling in mechanobiology.

[10]  R. D. Wood,et al.  Finite element analysis of the superplastic forming of thick sheet using the incremental flow formulation , 1997 .

[11]  R. D. Wood,et al.  A review of the numerical analysis of superplastic forming , 1996 .

[12]  Amit K. Ghosh,et al.  Mechanical behavior and hardening characteristics of a superplastic Ti-6AI-4V alloy , 1979 .

[13]  Philipp Scherer,et al.  CAD/CAM-prefabricated titanium implants for large skull defects - clinical experience with 166 patients from 1994 to 2000 , 2004, CARS.

[14]  D. A. Mosher,et al.  A State Variable Constitutive Model for Superplastic Ti-6Al-4V Based on Grain Size , 1996 .

[15]  Javier Bonet Error estimators and enrichment procedures for the finite element analysis of thin sheet large deformation processes , 1994 .

[16]  I. R. Pashby,et al.  The Measurement of Friction for Superplastic Forming of Ti-6Al-4V , 2004 .

[18]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[19]  M Dujovny,et al.  Cranioplasty: cosmetic or therapeutic? , 1997, Surgical neurology.

[20]  R. D. Wood,et al.  Superplastic forming of dental and maxillofacial prostheses , 2008 .

[21]  D. Dean,et al.  Computer Aided Design of Large-Format Prefabricated Cranial Plates , 2003, The Journal of craniofacial surgery.