Efficient Sequential Monte Carlo Algorithms for Integrated Population Models

[1]  C M Pooley,et al.  Bayesian model evidence as a practical alternative to deviance information criterion , 2018, Royal Society Open Science.

[2]  Jianfeng Lu,et al.  Discontinuous Hamiltonian Monte Carlo for models with discrete parameters and discontinuous likelihoods , 2017 .

[3]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[4]  Christopher C Drovandi,et al.  Alive SMC2: Bayesian model selection for low‐count time series models with intractable likelihoods , 2016, Biometrics.

[5]  Andrew Golightly,et al.  Efficiency of delayed-acceptance random walk Metropolis algorithms , 2015, The Annals of Statistics.

[6]  Duncan Temple Lang,et al.  Programming With Models: Writing Statistical Algorithms for General Model Structures With NIMBLE , 2015, 1505.05093.

[7]  Byron J. T. Morgan,et al.  Analysis of Capture-Recapture Data , 2014 .

[8]  Andrew Golightly,et al.  Delayed acceptance particle MCMC for exact inference in stochastic kinetic models , 2014, Stat. Comput..

[9]  Jin-Chuan Duan,et al.  Density-Tempered Marginalized Sequential Monte Carlo Samplers , 2013 .

[10]  John Parslow,et al.  Bayesian learning and predictability in a stochastic nonlinear dynamical model. , 2012, Ecological applications : a publication of the Ecological Society of America.

[11]  Brett T. McClintock,et al.  A general discrete‐time modeling framework for animal movement using multistate random walks , 2012 .

[12]  Ian D. Jonsen,et al.  State-space methods for more completely capturing behavioral dynamics from animal tracks , 2012 .

[13]  Byron J. T. Morgan,et al.  A Threshold Model for Heron Productivity , 2012 .

[14]  Perry de Valpine,et al.  Fitting complex population models by combining particle filters with Markov chain Monte Carlo. , 2012, Ecology.

[15]  Ruth King,et al.  A review of Bayesian state-space modelling of capture–recapture–recovery data , 2012, Interface Focus.

[16]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[17]  G. Peters,et al.  Ecological non-linear state space model selection via adaptive particle Markov chain Monte Carlo (AdPMCMC) , 2010, 1005.2238.

[18]  Olivier Gimenez,et al.  Estimation of immigration rate using integrated population models , 2010 .

[19]  Byron J. T. Morgan,et al.  Identifying and diagnosing population declines: a Bayesian assessment of lapwings in the UK , 2008 .

[20]  J Andrew Royle,et al.  Web-based Supplementary Materials for “ Modeling Individual Effects in the Cormack-Jolly-Seber Model : A State-space Formulation ” , 2010 .

[21]  Stephen T. Buckland,et al.  Embedding Population Dynamics Models in Inference , 2007, 0708.3796.

[22]  M. Schaub,et al.  Local population dynamics and the impact of scale and isolation: a study on different little owl populations , 2006 .

[23]  Tony O’Hagan Bayes factors , 2006 .

[24]  C. Fox,et al.  Markov chain Monte Carlo Using an Approximation , 2005 .

[25]  Juan M. Morales,et al.  EXTRACTING MORE OUT OF RELOCATION DATA: BUILDING MOVEMENT MODELS AS MIXTURES OF RANDOM WALKS , 2004 .

[26]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[27]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[28]  P Besbeas,et al.  Integrating Mark–Recapture–Recovery and Census Data to Estimate Animal Abundance and Demographic Parameters , 2002, Biometrics.

[29]  N. Chopin A sequential particle filter method for static models , 2002 .

[30]  Ken B. Newman,et al.  STATE-SPACE MODELING OF ANIMAL MOVEMENT AND MORTALITY WITH APPLICATION TO SALMON , 1998 .

[31]  P. Moral Nonlinear filtering : Interacting particle resolution , 1997 .

[32]  J. Dupuis Bayesian estimation of movement and survival probabilities from capture-recapture data , 1995 .

[33]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[34]  Walter R. Gilks,et al.  A Language and Program for Complex Bayesian Modelling , 1994 .

[35]  D. Lindley A STATISTICAL PARADOX , 1957 .

[36]  Byron J. T. Morgan,et al.  Modelling population dynamics : model formulation, fitting and assessment using state-space methods , 2014 .

[37]  David Fletcher,et al.  Statistical Ecology , 2011, International Encyclopedia of Statistical Science.

[38]  Olivier Gimenez,et al.  An assessment of integrated population models: bias, accuracy, and violation of the assumption of independence. , 2010, Ecology.

[39]  Panagiotis Besbeas,et al.  Completing the Ecological Jigsaw , 2009 .

[40]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[41]  S. Brooks,et al.  A Bayesian approach to combining animal abundance and demographic data , 2004 .

[42]  Martyn Plummer,et al.  JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling , 2003 .

[43]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[44]  José M Bernardo and Adrian F M Smith,et al.  BAYESIAN THEORY , 2008 .

[45]  Russell B. Millar,et al.  Non‐linear state space modelling of fisheries biomass dynamics by using Metropolis‐Hastings within‐Gibbs sampling , 2000 .