Modeling of Current Mismatch and 1/f Noise for Halo-Implanted Drain-Extended MOSFETs

Drain-extended MOSFET (DEMOS) with halo implant induced laterally asymmetric channel doping shows anomalous characteristics across bias and temperature that cannot be captured by existing models. The transconductance (<inline-formula> <tex-math notation="LaTeX">${g}_{m}$ </tex-math></inline-formula>) maxima in the linear region is found to be not only a function of the peak mobility but also the halo doping density. In the saturation region, the <inline-formula> <tex-math notation="LaTeX">${g}_{m}$ </tex-math></inline-formula> characteristics show a nonmonotonic “hump” induced by the halo-region/channel-region junction barrier. Another key care-about for analog design - the drain current (<inline-formula> <tex-math notation="LaTeX">${I}_{D}$ </tex-math></inline-formula>) mismatch, also exhibits unique characteristics with excess mismatch in the weak-inversion (WI) region, in particular at low temperature. In addition, the anomalous flicker noise (<inline-formula> <tex-math notation="LaTeX">${1}/{f}$ </tex-math></inline-formula> noise) trends in the presence of high-trap density in the halo region of halo-implanted DEMOS are also discussed. In this work, we propose an analytical model based on the equivalent conductance and impedance field theory to capture these effects. The proposed model is in good agreement with measurements and numerical device simulations using technology computer-aided design (TCAD) of DEMOS across a different oxide thickness, geometry, bias, and temperature.

[1]  U. Steiner Manuals , 2020, Human Shields.

[2]  Yogesh Singh Chauhan,et al.  Analysis and Modeling of Current Mismatch in Laterally Nonuniform MOSFETs , 2018, IEEE Transactions on Electron Devices.

[3]  C. Hu,et al.  Analysis and Modeling of Temperature and Bias Dependence of Current Mismatch in Halo-Implanted MOSFETs , 2018, IEEE Transactions on Electron Devices.

[4]  S. Sengupta,et al.  Analysis of Drain Current Local Variability of an n-Channel E $\delta$ DC MOSFET Due to RDD Considering Inversion Charge and Correlated Mobility Fluctuations , 2018, IEEE Transactions on Electron Devices.

[5]  C. Hu,et al.  Anomalous Transconductance in Long Channel Halo Implanted MOSFETs: Analysis and Modeling , 2017, IEEE Transactions on Electron Devices.

[6]  G. Ghibaudo,et al.  Drain current local variability from linear to saturation region in 28nm bulk NMOSFETs , 2017, 2016 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS).

[7]  C. Hu,et al.  Analytical Modeling of Flicker Noise in Halo Implanted MOSFETs , 2015, IEEE Journal of the Electron Devices Society.

[8]  E. Seebacher,et al.  Measurement and Compact Modeling of 1/f Noise in HV-MOSFETs , 2013, IEEE Transactions on Electron Devices.

[9]  E. Seebacher,et al.  Test Structure for High Voltage LD-MOSFET Device Mismatch Investigations , 2012, IEEE Transactions on Semiconductor Manufacturing.

[10]  S. Pendharkar,et al.  Effect of Stress-Induced Degradation in LDMOS $\hbox{1}/f$ Noise Characteristics , 2012, IEEE Electron Device Letters.

[11]  H. Tuinhout,et al.  Mismatch sources in LDMOS devices , 2010, 2010 Proceedings of the European Solid State Device Research Conference.

[12]  Adrian M. Ionescu,et al.  Scalable general high voltage MOSFET model including quasi-saturation and self-heating effects , 2006 .

[13]  Xuemei Xi,et al.  Analytical Modeling of Output Conductance in Long-Channel Halo-Doped MOSFETs , 2006, IEEE Transactions on Electron Devices.

[14]  Gerhard Rappitsch,et al.  Statistical Modelling of MOS Transistor Mismatch for High‐voltage CMOS Processes , 2005 .

[15]  C. Galup-Montoro,et al.  A compact model of MOSFET mismatch for circuit design , 2005, IEEE Journal of Solid-State Circuits.

[16]  K. Narasimhulu,et al.  Impact of lateral asymmetric channel doping on deep submicrometer mixed-signal device and circuit performance , 2003 .

[17]  W. Fichtner,et al.  Random dopant fluctuation modelling with the impedance field method , 2003, International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003..

[18]  Jason C. S. Woo,et al.  Channel engineering for analog device design in deep submicron CMOS technology for system on chip applications , 2002 .

[19]  H. Shichijo,et al.  High-Voltage Drain Extended MOS Transistors for 0.18 um Logic CMOS Process , 2000, 30th European Solid-State Device Research Conference.

[20]  Chenming Hu,et al.  Modeling of pocket implanted MOSFETs for anomalous analog behavior , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[21]  Shinji Odanaka,et al.  Potential Design and Transport Property of 0 . 1m MOSFET with Asymmetric Channel Profile , 1998 .

[22]  C. C. McAndrew,et al.  A 3-terminal model for diffused and ion-implanted resistors , 1997 .

[23]  S. Odanaka,et al.  Potential design and transport property of 0.1-/spl mu/m MOSFET with asymmetric channel profile , 1997 .

[24]  Ping-Keung Ko,et al.  A physics-based MOSFET noise model for circuit simulators , 1990 .

[25]  C.A.T. Salama,et al.  Modeling and characterization of CMOS-compatible high-voltage device structures , 1987, IEEE Transactions on Electron Devices.