Importance of hydrodynamic shielding for the dynamic behavior of short polyelectrolyte chains.

The dynamic behavior of polyelectrolyte chains in the oligomer range is investigated with coarse-grained molecular dynamics simulation and compared to data obtained by two different experimental methods, namely, capillary electrophoresis and electrophoresis NMR. We find excellent agreement of experiments and simulations when hydrodynamic interactions are accounted for in the simulations. We show that the electrophoretic mobility exhibits a maximum in the oligomer range and for the first time illustrate that this maximum is due to the hydrodynamical shielding between the chain monomers. Our findings demonstrate convincingly that it is possible to model dynamic behavior of polyelectrolytes using coarse-grained models for both the polyelectrolyte chains and the solvent induced hydrodynamic interactions.