Limbal Stem Cells in Review

The ocular surface consists of two distinct types of epithelial cells; conjunctival and corneal. Although anatomically continuous, these epithelia comprise two distinct cell populations. Corneal stem cells are located at the limbus. The microenvironment of the limbus is important in maintaining “stemness” of the stem cells and also acts as a barrier to conjunctival epithelial cells preventing them from migration onto the corneal surface.Damage to the limbus results in varying degrees of limbal stem cell deficiency with characteristic clinical features including conjunctivalization of the cornea. Regenerative management of corneal conjunctivalization utilizing stem cells comprises of two approaches; limbal auto- or allografts by using existing stem cells and induction and regeneration of ocular tissues from embryonic stem cells. Herein, we review stem cells and limbal stem cells in particular, types of epithelial cells in the cornea, markers of corneal epithelial cells in different stages, as well as the current approach to corneal epithelial regeneration.

[1]  K. Tsubota,et al.  Surgical treatment of limbal stem cell deficiency: are we really transplanting stem cells? , 2008, American journal of ophthalmology.

[2]  M. Lako,et al.  Loss of corneal epithelial stem cell properties in outgrowths from human limbal explants cultured on intact amniotic membrane. , 2008, Regenerative medicine.

[3]  V. Sangwan,et al.  Amniotic membrane transplantation: a review of current indications in the management of ophthalmic disorders. , 2007, Indian journal of ophthalmology.

[4]  Marzieh Ebrahimi,et al.  Comparison of characteristics of cultured limbal cells on denuded amniotic membrane and fresh conjunctival, limbal and corneal tissues , 2007, Development, growth & differentiation.

[5]  J. Qu,et al.  Normal development of refractive state and ocular dimensions in guinea pigs , 2006, Vision Research.

[6]  J. Jonas,et al.  Limbal stem cell deficiency after subconjunctival mitomycin C injection for trabeculectomy. , 2006, American journal of ophthalmology.

[7]  De-Quan Li,et al.  Gap Junction Protein Connexin 43 Serves as a Negative Marker for a Stem Cell‐Containing Population of Human Limbal Epithelial Cells , 2006, Stem cells.

[8]  A. Kicic,et al.  Limbal stem cells: the search for a marker , 2006, Clinical & experimental ophthalmology.

[9]  U. Schlötzer-Schrehardt,et al.  Identification and characterization of limbal stem cells. , 2005, Experimental eye research.

[10]  H. Dua,et al.  Amniotic membrane use in ophthalmology , 2005, Current opinion in ophthalmology.

[11]  V. Shanmuganathan,et al.  Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche , 2005, British Journal of Ophthalmology.

[12]  De-Quan Li,et al.  ABCG2 Transporter Identifies a Population of Clonogenic Human Limbal Epithelial Cells , 2005, Stem cells.

[13]  L. Reneker,et al.  Targeted gene expression in the chicken eye by in ovo electroporation. , 2004, Molecular vision.

[14]  J. Zieske,et al.  Corneal development associated with eyelid opening. , 2004, The International journal of developmental biology.

[15]  J. Wolosin,et al.  Ocular surface epithelial and stem cell development. , 2004, The International journal of developmental biology.

[16]  T. Sun,et al.  Corneal epithelial stem cells: past, present, and future. , 2004, The journal of investigative dermatology. Symposium proceedings.

[17]  T. Yoshitomi,et al.  Effect of Immunosuppression on Survival of Allograft Limbal Stem Cells , 2004, Japanese Journal of Ophthalmology.

[18]  Chien-Chia Cheng,et al.  Age-Related Expressions of p63 and Other Keratinocyte Stem Cell Markers in Rat Cornea , 2004, Journal of Biomedical Science.

[19]  V. Sangwan,et al.  Limbal stem cell deficiency and xeroderma pigmentosum: a case report , 2004, Eye.

[20]  De-Quan Li,et al.  Characterization of Putative Stem Cell Phenotype in Human Limbal Epithelia , 2004, Stem cells.

[21]  S. Tseng,et al.  Incidence of Microbial Infection After Amniotic Membrane Transplantation , 2004, Cornea.

[22]  John D West,et al.  Corneal development, limbal stem cell function, and corneal epithelial cell migration in the Pax6(+/-) mouse. , 2004, Investigative ophthalmology & visual science.

[23]  M. Fini,et al.  Transcription Factors Pax6 and AP-2α Interact To Coordinate Corneal Epithelial Repair by Controlling Expression of Matrix Metalloproteinase Gelatinase B , 2004, Molecular and Cellular Biology.

[24]  S. Tseng,et al.  Corneal stromal changes following reconstruction by ex vivo expanded limbal epithelial cells in rabbits with total limbal stem cell deficiency , 2003, The British journal of ophthalmology.

[25]  S. Tseng,et al.  Stromal niche controls the plasticity of limbal and corneal epithelial differentiation in a rabbit model of recombined tissue. , 2003, Investigative ophthalmology & visual science.

[26]  S. Tseng,et al.  Different cell sizes in human limbal and central corneal basal epithelia measured by confocal microscopy and flow cytometry. , 2003, Investigative ophthalmology & visual science.

[27]  V. C. Yang,et al.  Propagation and phenotypic preservation of rabbit limbal epithelial cells on amniotic membrane. , 2003, Investigative ophthalmology & visual science.

[28]  S. Tseng,et al.  Ex vivo expansion of limbal epithelial stem cells: amniotic membrane serving as a stem cell niche. , 2003, Survey of ophthalmology.

[29]  B. Dhillon,et al.  Ex Vivo Expansion of Corneal Limbal Epithelial/Stem Cells for Corneal Surface Reconstruction , 2003, European journal of ophthalmology.

[30]  J. Piatigorsky,et al.  Requirement for Pax6 in corneal morphogenesis: a role in adhesion , 2003, Journal of Cell Science.

[31]  D. Hardten,et al.  Penetrating Keratoplasty and Keratolimbal Allograft Transplantation for Corneal Perforations Associated With the Ectodermal Dysplasia Syndrome , 2003, Cornea.

[32]  N. Joyce Proliferative capacity of the corneal endothelium , 2003, Progress in Retinal and Eye Research.

[33]  Ueli Aebi,et al.  Molecular architecture of intermediate filaments , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[34]  D. Meller,et al.  Gap junctional communication in microinjected human limbal and peripheral corneal epithelial cells cultured on intact amniotic membrane. , 2003, Experimental eye research.

[35]  W. Thoreson,et al.  Adult corneal limbal epithelium: a model for studying neural potential of non-neural stem cells/progenitors. , 2002, Developmental biology.

[36]  S. Tseng,et al.  Phenotypic study of a case with successful transplantation of ex vivo expanded human limbal epithelium for unilateral total limbal stem cell deficiency. , 2002, Ophthalmology.

[37]  I. Schwab,et al.  A Fibrin-based Bioengineered Ocular Surface With Human Corneal Epithelial Stem Cells , 2002, Cornea.

[38]  W. Feuer,et al.  Long-term outcome of keratolimbal allograft with or without penetrating keratoplasty for total limbal stem cell deficiency. , 2002, Ophthalmology.

[39]  S. Tseng,et al.  Human limbal progenitor cells expanded on intact amniotic membrane ex vivo. , 2002, Archives of ophthalmology.

[40]  E. Jabs,et al.  Missense mutations in GJB2 encoding connexin-26 cause the ectodermal dysplasia keratitis-ichthyosis-deafness syndrome. , 2002, American journal of human genetics.

[41]  C. Foster,et al.  Limbal stem cell transplantation in chronic inflammatory eye disease. , 2002, Ophthalmology.

[42]  A. Adamis,et al.  The corneal epithelial stem cell. , 2002, DNA and cell biology.

[43]  K. Tsubota,et al.  Limbal Stem Cell Transplantation for the Treatment of Subepithelial Amyloidosis of the Cornea (Gelatinous Drop-like Dystrophy) , 2002, Cornea.

[44]  Jeong-Sook Park,et al.  rhEGF/HP-β-CD complex in poloxamer gel for ophthalmic delivery , 2002 .

[45]  G. Pellegrini,et al.  Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. , 2001, Transplantation.

[46]  S. Wilson,et al.  Characterization of human and mouse angiopoietin-like factor CDT6 promoters. , 2001, Investigative ophthalmology & visual science.

[47]  P. Khaw,et al.  Corneal stem cells in review , 2001, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[48]  H. Dua,et al.  Tacrolimus (FK506) in the management of high-risk corneal and limbal grafts. , 2001, Ophthalmology.

[49]  W. Birchmeier,et al.  New aspects of Wnt signaling pathways in higher vertebrates. , 2001, Current opinion in genetics & development.

[50]  V. Sangwan Limbal Stem Cells in Health and Disease , 2001, Bioscience reports.

[51]  S. Tseng,et al.  Amniotic Membrane Transplantation After the Primary Surgical Management of Band Keratopathy , 2001, Cornea.

[52]  M. Ávila,et al.  Reconstruction of Ocular Surface With Heterologous Limbal Epithelium and Amniotic Membrane in a Rabbit Model , 2001, Cornea.

[53]  S. Tseng,et al.  Amniotic membrane transplantation for partial limbal stem cell deficiency , 2001, The British journal of ophthalmology.

[54]  D. Ponzin,et al.  p63 identifies keratinocyte stem cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[55]  S. Tseng,et al.  Limbal stem cell deficiency arising from systemic chemotherapy , 2001, The British journal of ophthalmology.

[56]  J. Piatigorsky,et al.  Transketolase Gene Expression in the Cornea Is Influenced by Environmental Factors and Developmentally Controlled Events , 2000, Cornea.

[57]  Patrick Carrier,et al.  Can we produce a human corneal equivalent by tissue engineering? , 2000, Progress in Retinal and Eye Research.

[58]  T. Hoang‐Xuan,et al.  [Limbal stem cell deficiency]. , 2000, Journal francais d'ophtalmologie.

[59]  S. Rao,et al.  Current status of limbal conjunctival autograft. , 2000, Current opinion in ophthalmology.

[60]  N. Koizumi,et al.  Cultivation of corneal epithelial cells on intact and denuded human amniotic membrane. , 2000, Investigative ophthalmology & visual science.

[61]  R. Tsai,et al.  Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. , 2000, The New England journal of medicine.

[62]  C. Lohmann,et al.  Hypopyon after repeated transplantation of human amniotic membrane onto the corneal surface. , 2000, Ophthalmology.

[63]  Z. Stegman,et al.  Stem cells and differentiation stages in the limbo-corneal epithelium , 2000, Progress in Retinal and Eye Research.

[64]  H. Dua,et al.  Limbal stem cells of the corneal epithelium. , 2000, Survey of ophthalmology.

[65]  K. Tsubota Ocular surface management in corneal transplantation, a review. , 1999, Japanese journal of ophthalmology.

[66]  U. Mathur,et al.  Unusual intermediate-term outcome in three cases of limbal autograft transplantation. , 1999, Ophthalmology.

[67]  Christopher P. Crum,et al.  p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development , 1999, Nature.

[68]  Srinivas K. Rao,et al.  Limbal allografting from related live donors for corneal surface reconstruction. , 1999, Ophthalmology.

[69]  J. Piatigorsky,et al.  Aldehyde dehydrogenase class 3 expression: identification of a cornea-preferred gene promoter in transgenic mice. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[70]  S. Tseng,et al.  Rose bengal staining and cytologic characteristics associated with lipid tear deficiency. , 1997, American journal of ophthalmology.

[71]  M. Matić,et al.  Stem cells of the corneal epithelium lack connexins and metabolite transfer capacity. , 1997, Differentiation; research in biological diversity.

[72]  Michele De Luca,et al.  Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium , 1997, The Lancet.

[73]  David J. Anderson,et al.  Regulatory Mechanisms in Stem Cell Biology , 1997, Cell.

[74]  S. Tseng,et al.  Differential regulation of cytokine and receptor transcript expression in human corneal and limbal fibroblasts by epidermal growth factor, transforming growth factor-alpha, platelet-derived growth factor B, and interleukin-1 beta. , 1996, Investigative ophthalmology & visual science.

[75]  Shintaro T. Suzuki Structural and functional diversity of cadherin superfamily: Are new members of cadherin superfamily involved in signal transduction pathway? , 1996, Journal of cellular biochemistry.

[76]  N. Gilula,et al.  The Gap Junction Communication Channel , 1996, Cell.

[77]  J. Wolosin,et al.  Alpha-2,3 sialylation differentiate the limbal and corneal epithelial cell phenotypes. , 1995, Investigative ophthalmology & visual science.

[78]  S. Tseng,et al.  Cytologlogic Evidence of Corneal Diseases with Limbal Stem Cell Deficiency , 1995 .

[79]  S. Tseng,et al.  Transplantation of Preserved Human Amniotic Membrane for Surface Reconstruction in Severely Damaged Rabbit Corneas , 1995, Cornea.

[80]  J. Zieske,et al.  Epithelial regeneration after limbus-to-limbus debridement. Expression of alpha-enolase in stem and transient amplifying cells. , 1995, Investigative ophthalmology & visual science.

[81]  S. Tseng,et al.  Three patterns of cytokine expression potentially involved in epithelial‐fibroblast interactions of human ocular surface , 1995, Journal of cellular physiology.

[82]  P. Donaldson,et al.  Differential expression of two gap junction proteins in corneal epithelium. , 1994, European journal of cell biology.

[83]  J. D. Zieske,et al.  Regional variation in distribution of EGF receptor in developing and adult corneal epithelium. , 1993, Journal of cell science.

[84]  J. J. van den Oord,et al.  A new epithelial cell type in the human cornea. , 1993, Investigative ophthalmology & visual science.

[85]  J. J. van den Oord,et al.  The transitional zone between limbus and peripheral cornea. An immunohistochemical study. , 1993, Investigative ophthalmology & visual science.

[86]  T. Sun,et al.  In vitro growth and differentiation of rabbit bulbar, fornix, and palpebral conjunctival epithelia. Implications on conjunctival epithelial transdifferentiation and stem cells. , 1993, Investigative ophthalmology & visual science.

[87]  J. Zieske,et al.  Localization of corneal epithelial stem cells in the developing rat. , 1992, Investigative ophthalmology & visual science.

[88]  S. Tseng,et al.  Abnormal corneal epithelial wound healing in partial-thickness removal of limbal epithelium. , 1991, Investigative ophthalmology & visual science.

[89]  S. Tseng,et al.  Conjunctival transdifferentiation is due to the incomplete removal of limbal basal epithelium. , 1990, Investigative ophthalmology & visual science.

[90]  Akinao Nose,et al.  Localization of specificity determining sites in cadherin cell adhesion molecules , 1990, Cell.

[91]  S. Tseng,et al.  Limbal autograft transplantation for ocular surface disorders. , 1989, Ophthalmology.

[92]  T. Sun,et al.  Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: Implications on epithelial stem cells , 1989, Cell.

[93]  S. Tseng,et al.  Morphogenesis of rat conjunctival goblet cells. , 1988, Investigative ophthalmology & visual science.

[94]  G. Technau A single cell approach to problems of cell lineage and commitment during embryogenesis of Drosophila melanogaster. , 1987, Development.

[95]  A. Schermer,et al.  Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells , 1986, The Journal of cell biology.

[96]  L. Lajtha,et al.  STEM CELLS VERSUS STEM LINES , 1982, Annals of the New York Academy of Sciences.

[97]  Wei Li,et al.  Niche regulation of corneal epithelial stem cells at the limbus , 2007, Cell Research.

[98]  M. Lako,et al.  Corneal epithelial stem cells: characterization, culture and transplantation. , 2006, Regenerative medicine.

[99]  G. Pellegrini,et al.  Regeneration of squamous epithelia from stem cells of cultured grafts. , 2006, Regenerative medicine.

[100]  H. Dua,et al.  The amniotic membrane in ophthalmology. , 2004, Survey of ophthalmology.

[101]  S. Tseng Regulation and clinical implications of corneal epithelial stem cells , 2004, Molecular Biology Reports.

[102]  Y. Hsueh,et al.  HSUEH YJ, WANG DY, CHENG CC, CHEN JK. AGERELATED EXPRESSIONS OF P63 AND OTHER KERATINOCYTE STEM CELL MARKERS IN RAT CORNEA , 2004 .

[103]  E. Holland,et al.  Management of aniridic keratopathy with keratolimbal allograft: a limbal stem cell transplantation technique. , 2003, Ophthalmology.

[104]  E. Wylęgała,et al.  LIMBAL STEM CELL TRANSPLANTATION FROM HLACOMPATIBLE LIVING DONORS. LONG TERM OBSERVATION , 2003 .

[105]  M. Matic,et al.  Epidermal stem cells do not communicate through gap junctions. , 2002, The Journal of investigative dermatology.

[106]  A. Panda,et al.  Surgical outcomes of Epibulbar dermoids. , 2002, Journal of pediatric ophthalmology and strabismus.

[107]  E. Y. Kim,et al.  rhEGF/HP-beta-CD complex in poloxamer gel for ophthalmic delivery. , 2002, International journal of pharmaceutics.

[108]  E. Alfonso Treatment of severe ocular-surface disorders with corneal epithelial stem cell transplantation. , 2000, Archives of ophthalmology.

[109]  C. Lohmann,et al.  HYPOPYON AFTER REPEATED TRANSPLANTATION OF HUMAN AMNIOTIC MEMBRANE ONTO LIMBAL STEM CELLS THE CORNEAL SURFACE , 2000 .

[110]  J. Davenport,et al.  Human corneal epithelial cell adhesion to laminins. , 1999, Current eye research.

[111]  C. Foster,et al.  Limbal stem-cell transplantation. , 1999, International ophthalmology clinics.

[112]  K. Fukuda,et al.  Differential distribution of subchains of the basement membrane components type IV collagen and laminin among the amniotic membrane, cornea, and conjunctiva. , 1999, Cornea.

[113]  F. Cs,et al.  Limbal stem-cell transplantation. , 1999 .

[114]  J. Piatigorsky,et al.  Heterogeneous expression of transketolase in ocular tissues. , 1997, Current eye research.

[115]  O. Sundin,et al.  The Pax-6 homeobox gene is expressed throughout the corneal and conjunctival epithelia. , 1997, Investigative ophthalmology & visual science.

[116]  H. Dua,et al.  E-cadherin distribution and epithelial basement membrane characteristics of the normal human conjunctiva and cornea , 1997, Eye.

[117]  S. Tseng,et al.  Cytologic evidence of corneal diseases with limbal stem cell deficiency. , 1995, Ophthalmology.

[118]  J. Zieske Perpetuation of stem cells in the eye , 1994, Eye.

[119]  F. Kruse Stem cells and corneal epithelial regeneration , 1994, Eye.

[120]  J. Zieske,et al.  Characterization of a potential marker of corneal epithelial stem cells. , 1992, Investigative ophthalmology & visual science.

[121]  S. Tseng,et al.  Limbal transplantation for ocular surface reconstruction--a review. , 1991, Fortschritte der Ophthalmologie : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[122]  N. Sundarraj,et al.  The multipotential cells of the limbus , 1989, Eye.

[123]  S. Tseng Concept and application of limbal stem cells , 1989, Eye.

[124]  R. Schofield The stem cell system. , 1983, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.