Generating Cycle Time-Throughput Curves Using Effective Process Time Based Aggregate Modeling
暂无分享,去创建一个
[1] Gerald T. Mackulak,et al. D-Optimal Sequential Experiments for Generating a Simulation-Based Cycle Time-Throughput Curve , 2002, Oper. Res..
[2] A. A. A. Kock,et al. Effective process times for multi-server flowlines with finite buffers , 2008 .
[3] John Frank Charles Kingman,et al. The single server queue in heavy traffic , 1961, Mathematical Proceedings of the Cambridge Philosophical Society.
[4] Adam Wierman,et al. Aggregate modeling of multi-processing workstations , 2008 .
[5] Jacobus E. Rooda,et al. Characterization of operational time variability using effective process times , 2003 .
[6] Barry L. Nelson,et al. Efficient generation of cycle time‐throughput curves through simulation and metamodeling , 2005, WSC '05.
[7] Yuhchang Hwang,et al. A systematic study of the extended X-factor in relation to effective system capacity , 2005 .
[8] S. C. Wood,et al. Simple performance models for integrated processing tools , 1996 .
[9] Hirotaka Sakasegawa,et al. An approximation formulaLq ≃α·ρβ/(1-ρ) , 1977 .
[10] Gerald T. Mackulak,et al. Efficient cycle time-throughput curve generation using a fixed sample size procedure , 2001 .
[11] Ward Whitt,et al. APPROXIMATIONS FOR THE GI/G/m QUEUE , 1993 .
[12] David D. Yao,et al. A queueing network model for semiconductor manufacturing , 1996 .
[13] Aaa Ad Kock. Effective process times for aggregate modeling of manufacturing systems , 2008 .
[14] James R. Morrison,et al. Practical Extensions to Cycle Time Approximations for the $G/G/m$-Queue With Applications , 2007, IEEE Transactions on Automation Science and Engineering.
[15] Wallace J. Hopp,et al. Factory physics : foundations of manufacturing management , 1996 .