An identification system based on the explicit isomorphism problem

We propose various zero knowledge protocols based on the algorithmic problem of finding isomorphisms between central simple algebras over number fields given by structure constants. We also design a protocol which is based on the hardness of finding an element with a prescribed minimal polynomial in a central simple algebra given by structure constants. This protocol allows arbitrarily long challenges and thus can be turned into a digital signature scheme.

[1]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[2]  John Cremona,et al.  Explicit n-descent on elliptic curves III. Algorithms , 2011, Math. Comput..

[3]  F. J. Lobillo,et al.  A New Perspective of Cyclicity in Convolutional Codes , 2016, IEEE Transactions on Information Theory.

[4]  Richard E. Overill,et al.  Foundations of Cryptography: Basic Tools , 2002, J. Log. Comput..

[5]  Lajos Rónyai,et al.  Computing the Structure of Finite Algebras , 1990, J. Symb. Comput..

[6]  Lajos Rónyai,et al.  Computing Explicit Isomorphisms with Full Matrix Algebras over $$\mathbb {F}_q(x)$$Fq(x) , 2018, Found. Comput. Math..

[7]  Jana Pílniková Trivializing a central simple algebra of degree 4 over the rational numbers , 2007, J. Symb. Comput..

[8]  G. Ivanyos Algorithms for algebras over global fields , 1996 .

[9]  Helmut Knebl,et al.  Introduction to Cryptography - Principles and Applications, Third Edition , 2015, Information Security and Cryptography.

[10]  Lajos Rónyai,et al.  Polynomial time solutions of some problems of computational algebra , 1985, STOC '85.

[11]  George Havas,et al.  Extended GCD and Hermite Normal Form Algorithms via Lattice Basis Reduction , 1998, Exp. Math..

[12]  Lajos Rónyai,et al.  Splitting full matrix algebras over algebraic number fields , 2011, ArXiv.

[13]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[14]  Claus-Peter Schnorr,et al.  Identification and signatures based on NP-hard problems of indefinite quadratic forms , 2008, J. Math. Cryptol..

[15]  Alon Rosen,et al.  An Efficiency-Preserving Transformation from Honest-Verifier Statistical Zero-Knowledge to Statistical Zero-Knowledge , 2018, IACR Cryptol. ePrint Arch..

[16]  Amit Sahai,et al.  Honest-verifier statistical zero-knowledge equals general statistical zero-knowledge , 1998, STOC '98.

[17]  Josef Schicho,et al.  A Lie algebra method for rational parametrization of Severi-Brauer surfaces , 2005 .

[18]  P. Castel Solving quadratic equations in dimension 5 or more without factoring , 2013 .

[19]  G. Militaru,et al.  Associative algebras , 2019, Extending Structures.

[20]  J. Cremona,et al.  Explicit n-descent on elliptic curves, I. Algebra , 2006, math/0606580.

[21]  Gábor Ivanyos,et al.  Finding the radical of an algebra of linear transformations , 1997 .

[22]  Lajos Rónyai,et al.  Simple algebras are difficult , 1987, STOC.

[23]  Silvio Micali,et al.  The Knowledge Complexity of Interactive Proof Systems , 1989, SIAM J. Comput..

[24]  Péter Kutas Splitting quaternion algebras over quadratic number fields , 2019, J. Symb. Comput..

[25]  Mihir Bellare,et al.  Random oracles are practical: a paradigm for designing efficient protocols , 1993, CCS '93.

[26]  Silvio Micali,et al.  Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems , 1991, JACM.

[27]  J. Cremona,et al.  Explicit n-descent on elliptic curves, II. Geometry , 2006, math/0611606.