On Localization and Stabilization for Factorization Systems

If (ε, M)is a factorization system on a category C, we define new classes of maps as follows: a map f:A→B is in ε′ if each of its pullbacks lies in ε(that is, if it is stably in ε), and is in M* if some pullback of it along an effective descent map lies in M(that is, if it is locally in M). We find necessary and sufficient conditions for (ε′, M*) to be another factorization system, and show that a number of interesting factorization systems arise in this way. We further make the connexion with Galois theory, where M*is the class of coverings; and include self-contained modern accounts of factorization systems, descent theory, and Galois theory.

[1]  S. Lack,et al.  Introduction to extensive and distributive categories , 1993 .

[2]  G Z Dzhanelidze,et al.  THE FUNDAMENTAL THEOREM OF GALOIS THEORY , 1989 .

[3]  Walter Tholen,et al.  Composites of effective descent maps , 1993 .

[4]  Samuel Eilenberg,et al.  Sur les transformations continues d'espaces métriques compacts , 1934 .

[5]  George Janelidze,et al.  Pure Galois theory in categories , 1990 .

[6]  A. Carboni,et al.  Some free constructions in realizability and proof theory , 1995 .

[7]  G. M. Kelly,et al.  Galois theory and a general notion of central extension , 1994 .

[8]  Michael Barr,et al.  On locally simply connected toposes and their fundamental groups , 1981 .

[9]  Walter Tholen,et al.  Facets of Descent, II , 1994, Appl. Categorical Struct..

[10]  G. M. Kelly,et al.  Categories of continuous functors, I , 1972 .

[11]  Gordon Thomas Whyburn,et al.  Open Mappings on Locally Compact Spaces , 1950 .

[12]  A. K. Bousfield,et al.  Constructions of factorization systems in categories , 1977 .

[13]  J. R. Isbell,et al.  Subobjects, adequacy, completeness and categories of algebras , 1964 .

[14]  George Janelidze,et al.  Precategories and Galois theory , 1991 .

[15]  G. M. Kelly,et al.  Reflective subcategories, localizations and factorizationa systems , 1985, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[16]  Walter Tholen,et al.  Factorizations, Localizations, and the Orthogonal Subcategory Problem , 1983 .

[17]  N. Jacobson,et al.  Lectures in Abstract Algebra : vol. III, Theory of Fields and Galois Theory. By N. Jacobson. Pp. xi, 323. 76s. (Van Nostrand) , 1966, The Mathematical Gazette.

[18]  N. Jacobson Lectures In Abstract Algebra , 1951 .

[19]  S. Lane Categories for the Working Mathematician , 1971 .

[20]  Walter Tholen,et al.  Decomposition of morphisms into infinitely many factors , 1982 .