AS++ T-splines: Linear independence and approximation

Abstract In this paper, we define analysis-suitable++ (AS++) T-splines which include analysis-suitable (AS) T-splines as a special case and maintain all the good mathematical properties as AS T-splines. We prove that AS++ T-splines are always linear independent regardless of the knot values and show that the classical construction of the dual basis for tensor-product B-splines and AS T-splines can be generalized to AS++ T-spline spaces. We also discuss how all of these issues pave the way to a mathematical theory for AS++ T-splines.

[1]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[2]  Hongwei Lin,et al.  Watertight trimmed NURBS , 2008, ACM Trans. Graph..

[3]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[4]  Xin Li,et al.  On the Linear Independence and Partition of Unity of Arbitrary Degree Analysis-Suitable T-splines , 2015 .

[5]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[6]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[7]  L. Beirão da Veiga,et al.  Analysis-suitable T-splines of arbitrary degree : definition and properties , 2012 .

[8]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[9]  Giancarlo Sangalli,et al.  Analysis-Suitable T-splines are Dual-Compatible , 2012 .

[10]  Xin Li,et al.  Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.

[11]  Heather Ipson,et al.  T-spline Merging , 2005 .

[12]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[13]  G. Sangalli,et al.  Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .

[14]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[15]  Giancarlo Sangalli,et al.  ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .

[16]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.