AS++ T-splines: Linear independence and approximation
暂无分享,去创建一个
[1] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[2] Hongwei Lin,et al. Watertight trimmed NURBS , 2008, ACM Trans. Graph..
[3] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[4] Xin Li,et al. On the Linear Independence and Partition of Unity of Arbitrary Degree Analysis-Suitable T-splines , 2015 .
[5] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[6] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[7] L. Beirão da Veiga,et al. Analysis-suitable T-splines of arbitrary degree : definition and properties , 2012 .
[8] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[9] Giancarlo Sangalli,et al. Analysis-Suitable T-splines are Dual-Compatible , 2012 .
[10] Xin Li,et al. Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.
[11] Heather Ipson,et al. T-spline Merging , 2005 .
[12] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[13] G. Sangalli,et al. Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .
[14] T. Hughes,et al. Local refinement of analysis-suitable T-splines , 2012 .
[15] Giancarlo Sangalli,et al. ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .
[16] Nicholas S. North,et al. T-spline simplification and local refinement , 2004, SIGGRAPH 2004.