On cyclic 2(k-1)-support (n, k)k-1 difference families

A cyclic @d-support (n,k)"@m difference family (briefly @d-supp (n,k)"@m-CDF) is a family F of k-subsets of Z"n such that (i) every nonzero element x of Z"n appears in the list @DB of differences of exactly one member B of F; (ii) the number of times that x appears in @DB is at most @m; and (iii) the number of distinct elements appearing in @DB is exactly @d for every B@?F. The study of this concept is motivated by applications for multiple-access communication systems. In this paper, we treat the case when (@d,@m)=(2(k-1),k-1) and discuss about the existence of 2(k-1)-supp (p,k)"k"-"1-CDFs with p primes in relation to the problem of perfect packings. Furthermore, we prove that the set of primes p for which there exist 2(k-1)-supp (p,k)"k"-"1-CDFs is infinite for the cases k=4 and 5 by investigating the Kronecker density.

[1]  Clement W. H. Lam,et al.  Difference Families , 2001, Des. Codes Cryptogr..

[2]  James L. Massey,et al.  The collision channel without feedback , 1985, IEEE Trans. Inf. Theory.

[3]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[4]  Douglas R Stinson,et al.  Surveys in Combinatorics, 1999: Applications of Combinatorial Designs to Communications, Cryptography, and Networking , 1999 .

[5]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. I. Fundamental principles , 1989, IEEE Trans. Commun..

[6]  Yanxun Chang,et al.  Combinatorial constructions of optimal optical orthogonal codes with weight 4 , 2003, IEEE Trans. Inf. Theory.

[7]  P. Ribenboim Classical Theory Of Algebraic Numbers , 2001 .

[8]  Vladimir D. Tonchev,et al.  On Conflict-Avoiding Codes of Length $n=4m$ for Three Active Users , 2007, IEEE Transactions on Information Theory.

[9]  Jianxing Yin,et al.  Some combinatorial constructions for optical orthogonal codes , 1998, Discret. Math..

[10]  Meinard Müller,et al.  Constant Weight Conflict-Avoiding Codes , 2007, SIAM J. Discret. Math..

[11]  Marco Buratti,et al.  Constructions of (q, k, 1) difference families with q a prime power and k = 4, 5 , 1995, Discret. Math..

[12]  Peter Mathys,et al.  A class of codes for a T active users out of N multiple-access communication system , 1990, IEEE Trans. Inf. Theory.

[13]  Marco Buratti A packing problem its application to Bose's families , 1996 .

[14]  C. Colbourn,et al.  CRC Handbook of Combinatorial Designs , 1996 .

[15]  Ryoh Fuji-Hara,et al.  Optical orthogonal codes: Their bounds and new optimal constructions , 2000, IEEE Trans. Inf. Theory.

[16]  Koji Momihara,et al.  Necessary and sufficient conditions for tight equi-difference conflict-avoiding codes of weight three , 2007, Des. Codes Cryptogr..

[17]  Koji Momihara,et al.  Bounds and Constructions of Optimal ($n, 4, 2, 1$) Optical Orthogonal Codes , 2009, IEEE Transactions on Information Theory.

[18]  R. Julian R. Abel,et al.  Some progress on (v, 4, 1) difference families and optical orthogonal codes , 2004, J. Comb. Theory, Ser. A.

[19]  K. Chen,et al.  Existence of (q, k, 1) difference families with q a prime power and k = 4, 5 , 1999 .

[20]  S. Lang Number Theory III , 1991 .

[21]  O. Moreno,et al.  Multimedia transmission in fiber-optic LANs using optical CDMA , 1996 .

[22]  S. V. Maric,et al.  Multirate fiber-optic CDMA: system design and performance analysis , 1998 .

[23]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. II. Systems performance analysis , 1989, IEEE Trans. Commun..

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  Rose Peltesohn Eine Lösung der beiden Heffterschen Differenzenprobleme , 1939 .

[26]  Richard M. Wilson,et al.  Cyclotomy and difference families in elementary abelian groups , 1972 .

[27]  Ryoh Fuji-Hara,et al.  Optimal (9v, 4, 1) Optical Orthogonal Codes , 2001, SIAM J. Discret. Math..