Composite membranes based on micro and mesostructured silica: A comparison of physicochemical and tr
暂无分享,去创建一个
Luis Gerardo Arriaga | R. Pedicini | Irene Gatto | Janet Ledesma-García | R. Ornelas | J. Ledesma-García | L. Arriaga | R. Pedicini | A. Carbone | I. Gatto | R. Ornelas | A. Carbone | E. Passalacqua | C. Guzmán | Alberto M. Alvarez | Carlos Alberto Guzman | Antonino Sacca | Edward F Passalacqua | Rafael Fernandez Nava | A. Saccà | A. Álvarez | R. Nava
[1] D. Brunel,et al. MCM-41 type silicas as supports for immobilized catalysts , 1995 .
[2] Hwayong Kim,et al. Composite Nafion/polyphenylene oxide (PPO) membranes with phosphomolybdic acid (PMA) for direct methanol fuel cells , 2005 .
[3] V. Antonucci,et al. Influence of the acid-base characteristics of inorganic fillers on the high temperature performance of composite membranes in direct methanol fuel cells , 2003 .
[4] Silvia Licoccia,et al. Nafion–TiO2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs) , 2005 .
[5] Jiujun Zhang,et al. Preparation and performance of nano silica/Nafion composite membrane for proton exchange membrane fuel cells , 2008 .
[6] H. Pu,et al. Preparation and properties of Nafion®/hollow silica spheres composite membranes , 2008 .
[7] Abu Bakar Mohamad,et al. Nafion / Silicon oxide / phosphotungstic acid nanocomposite membrane with enhanced proton conductivity. , 2009 .
[8] A. Saccà,et al. Composite S-PEEK membranes for medium temperature polymer electrolyte fuel cells , 2008 .
[9] J. Fierro,et al. Comparison of the morphology and HDS activity of ternary Co-Mo-W catalysts supported on P-modified SBA-15 and SBA-16 substrates , 2009 .
[10] V. Antonucci,et al. Hybrid Nafion-silica membranes doped with heteropolyacids for application in direct methanol fuel cells , 2001 .
[11] S. Holdcroft,et al. Transport properties of composite membranes containing silicon dioxide and Nafion , 2008 .
[12] High proton conductive advanced hybrid membrane based on sulfonated Si-SBA-15 , 2009 .
[13] O. Lebedev,et al. Mesoporous material formed by acidic hydrothermal assembly of silicalite-1 precursor nanoparticles in the absence of meso-templates , 2008 .
[14] Jun Liu,et al. Hybrid Mesoporous Materials with Functionalized Monolayers , 1998 .
[15] C. Ma,et al. High proton-conducting Nafion®/–SO3H functionalized mesoporous silica composite membranes , 2007 .
[16] G. Portale,et al. Structural and electrochemical investigation on re-cast Nafion membranes for polymer electrolyte fuel cells (PEFCs) application , 2006 .
[17] A. Saccà,et al. CO-tolerant electrodes developed with PhosphoMolybdic Acid for Polymer Electrolyte Fuel Cell (PEFCs) application , 2007 .
[18] Kenneth M. Kemner,et al. Functionalized Monolayers on Ordered Mesoporous Supports , 1997 .
[19] Katarina Flodström,et al. Influence of the block length of triblock copolymers on the formation of mesoporous silica , 2003 .
[20] V. Di Noto,et al. Effect of SiO2 on relaxation phenomena and mechanism of ion conductivity of [Nafion/(SiO2)x] composite membranes. , 2006, The journal of physical chemistry. B.
[21] R. Nava,et al. Upgrading of bio-liquids on different mesoporous silica-supported CoMo catalysts , 2009 .
[22] M. Pan,et al. Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes , 2010 .
[23] James M. Fenton,et al. Composite silica/Nafion® membranes prepared by tetraethylorthosilicate sol-gel reaction and solution casting for direct methanol fuel cells , 2006 .
[24] S. Mann,et al. Synthesis and characterization of ordered organo–silica–surfactant mesophases with functionalized MCM-41-type architecture , 1997 .
[25] S. Ardizzone,et al. Physico-Chemical Features and Catalytic Activity of Sulfated Zirconia Prepared by Sol–Gel Method. The Role of the Solvent Evaporation Step , 2001 .
[26] S. S. Murthy,et al. Synthesis and characterization of composite membranes based on α-zirconium phosphate and silicotungstic acid , 2007 .
[27] M. Pan,et al. Nafion–zirconia nanocomposite membranes formed via in situ sol–gel process , 2010 .
[28] T. Viveros,et al. Synthesis and characterization of mesoporous materials: Silica–zirconia and silica–titania , 2009 .
[29] Antonino S. Aricò,et al. Nafion–TiO2 composite DMFC membranes: physico-chemical properties of the filler versus electrochemical performance , 2005 .
[30] Haixia Zhang,et al. Preparation, characterization and adsorption properties studies of 3-(methacryloyloxy)propyltrimethoxysilane modified and polymerized sol–gel mesoporous SBA-15 silica molecular sieves , 2009 .
[31] R. M. Aranda,et al. ZrO2 obtained by the sol-gel method: influence of synthesis parameters on physical and structural characteristics , 1994 .
[32] A. Saccà,et al. ZrO2–Nafion composite membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature , 2006 .
[33] S. H. Kim,et al. ZrO2–SiO2/Nafion® composite membrane for polymer electrolyte membrane fuel cells operation at high temperature and low humidity , 2008 .
[34] V. Antonucci,et al. High temperature operation of a composite membrane-based solid polymer electrolyte water electrolyser , 2008 .
[35] Dongyuan Zhao,et al. Morphological Control of Highly Ordered Mesoporous Silica SBA-15 , 2000 .
[36] K. Nahm,et al. Nafion membranes modified with silica sulfuric acid for the elevated temperature and lower humidity operation of PEMFC , 2009 .