One More Tag Enables Fine-Grained RFID Localization and Tracking

Exploiting radio frequency signals is promising for locating and tracking objects. Prior works focus on per-tag localization, in which each object is attached with one tag. In this paper, we propose a comprehensive localization and tracking scheme by attaching two RFID tags to one object. Instead of using per-tag localization pattern, adding one-more RFID tag to the object exhibits several benefits: 1) providing rich freedom in RFID reader’s antenna spacing and placement; 2) supporting accurate calibration of the reader’s antenna location and spacing, and 3) enabling fine-grained calculation on the orientation of the tags. All of these advantages ultimately improve the localization/tracking accuracy. Our extensive experimental results demonstrate that the average errors of localization and orientation of target tags are 6.415 cm and 1.330°, respectively. Our results also verify that the reader’s antenna geometry does have impact on tag positioning performance.

[1]  R.C. Luo,et al.  RFID-based Indoor Antenna Localization System using Passive Tag and Variable RF-Attenuation , 2007, IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society.

[2]  Martin Vossiek,et al.  Holographic localization of passive UHF RFID transponders , 2011, 2011 IEEE International Conference on RFID.

[3]  Lei Yang,et al.  Beyond one-dollar mouse: A battery-free device for 3D human-computer interaction via RFID tags , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[4]  D. Dobkin The RF in RFID : UHF RFID in Practice Ed. 2 , 2012 .

[5]  Jie Wu,et al.  Tell me what i see: recognize RFID tagged objects in augmented reality systems , 2016, UbiComp.

[6]  Dina Katabi,et al.  RF-IDraw: virtual touch screen in the air using RF signals , 2014, S3@MobiCom.

[7]  Lei Yang,et al.  See Through Walls with COTS RFID System! , 2015, MobiCom.

[8]  Yunhao Liu,et al.  OTrack: Order tracking for luggage in mobile RFID systems , 2013, 2013 Proceedings IEEE INFOCOM.

[9]  Xingming Sun,et al.  Structural Minimax Probability Machine , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[10]  Wei Wang,et al.  Moving tag detection via physical layer analysis for large-scale RFID systems , 2016, IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications.

[11]  K. Jaakkola,et al.  Phase-Based UHF RFID Tracking With Nonlinear Kalman Filtering and Smoothing , 2012, IEEE Sensors Journal.

[12]  Jue Wang,et al.  Dude, where's my card?: RFID positioning that works with multipath and non-line of sight , 2013, SIGCOMM.

[13]  A. Leick GPS satellite surveying , 1990 .

[14]  Yuanqing Zheng,et al.  PLACE: Physical Layer Cardinality Estimation for Large-Scale RFID Systems , 2015, IEEE/ACM Transactions on Networking.

[15]  Yunhao Liu,et al.  Relative Localization of RFID Tags using Spatial-Temporal Phase Profiling , 2015, NSDI.

[16]  Jue Wang,et al.  RF-IDraw: virtual touch screen in the air using RF signals , 2015, SIGCOMM 2015.

[17]  Lei Yang,et al.  BackPos: High Accuracy Backscatter Positioning System , 2016, IEEE Transactions on Mobile Computing.

[18]  Lei Yang,et al.  Perceiving the Slightest Tag Motion beyond Localization , 2015, IEEE Transactions on Mobile Computing.

[19]  Francesco Martinelli,et al.  A Robot Localization System Combining RSSI and Phase Shift in UHF-RFID Signals , 2015, IEEE Transactions on Control Systems Technology.

[20]  M. Vossiek,et al.  Inverse SAR approach for localization of moving RFID tags , 2013, 2013 IEEE International Conference on RFID (RFID).

[21]  Markus Cremer,et al.  UHF RFID localization system based on a phased array antenna , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).

[22]  Xiang Li,et al.  Dynamic-MUSIC: accurate device-free indoor localization , 2016, UbiComp.

[23]  Jan P. Weiss,et al.  Single receiver phase ambiguity resolution with GPS data , 2010 .

[24]  Yunhao Liu,et al.  LANDMARC: Indoor Location Sensing Using Active RFID , 2004, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)..

[25]  Lei Yang,et al.  Accurate Spatial Calibration of RFID Antennas via Spinning Tags , 2016, 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS).

[26]  Lei Yang,et al.  Tagoram: real-time tracking of mobile RFID tags to high precision using COTS devices , 2014, MobiCom.

[27]  Reza Malekian,et al.  TrackT: Accurate tracking of RFID tags with mm-level accuracy using first-order taylor series approximation , 2016, Ad Hoc Networks.