Fast and Compact Exact Distance Oracle for Planar Graphs

For a given a graph, a distance oracle is a data structure that answers distance queries between pairs of vertices. We introduce an O(n 5/3)-space distance oracle which answers exact distance queries in O(log n) time for n-vertex planar edge-weighted digraphs. All previous distance oracles for planar graphs with truly subquadratic space (i.e., space O(n 2- ) for some constant 0) either required query time polynomial in n or could only answer approximate distance queries.Furthermore, we show how to trade-off time and space: for any S ≥ n 3/2, we show how to obtain an S-space distance 5/2 oracle that answers queries in time O(S n 3/2 log n). This is a polynomial improvement over the previous planar distance oracles with o(n 1/4) query time.

[1]  Béla Bollobás,et al.  Extremal problems in graph theory , 1977, J. Graph Theory.

[2]  Ken-ichi Kawarabayashi,et al.  More Compact Oracles for Approximate Distances in Undirected Planar Graphs , 2013, SODA.

[3]  Greg N. Frederickson,et al.  Fast Algorithms for Shortest Paths in Planar Graphs, with Applications , 1987, SIAM J. Comput..

[4]  Mikkel Thorup,et al.  Approximate distance oracles , 2005, J. ACM.

[5]  Hristo Djidjev,et al.  On-Line Algorithms for Shortest Path Problems on Planar Digraphs , 1996, WG.

[6]  Philip N. Klein,et al.  Preprocessing an undirected planar network to enable fast approximate distance queries , 2002, SODA '02.

[7]  Sergio Cabello Subquadratic algorithms for the diameter and the sum of pairwise distances in planar graphs , 2017, SODA 2017.

[8]  Philip N. Klein,et al.  Structured recursive separator decompositions for planar graphs in linear time , 2012, STOC '13.

[9]  Haim Kaplan,et al.  Voronoi Diagrams on Planar Graphs, and Computing the Diameter in Deterministic Õ(n5/3) Time , 2017, SODA.

[10]  Uri Zwick,et al.  Exact and Approximate Distances in Graphs - A Survey , 2001, ESA.

[11]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[12]  Christian Wulff-Nilsen,et al.  Approximate distance oracles with improved preprocessing time , 2011, SODA.

[13]  Piotr Sankowski,et al.  Improved algorithms for min cut and max flow in undirected planar graphs , 2011, STOC '11.

[14]  Rolf Klein,et al.  Abstract Voronoi diagrams revisited , 2009, Comput. Geom..

[15]  Haim Kaplan,et al.  Submatrix maximum queries in Monge matrices and Monge partial matrices, and their applications , 2012, SODA.

[16]  Shiri Chechik,et al.  Approximate Distance Oracles with Improved Bounds , 2015, STOC.

[17]  Michiel H. M. Smid,et al.  Planar Spanners and Approximate Shortest Path Queries among Obstacles in the Plane , 1996, ESA.

[18]  Pawel Gawrychowski,et al.  Improved Bounds for Shortest Paths in Dense Distance Graphs , 2018, ICALP.

[19]  Christian Wulff-Nilsen,et al.  Approximate Distance Oracles for Planar Graphs with Improved Query Time-Space Tradeoff , 2016, SODA.

[20]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[21]  Ken-ichi Kawarabayashi,et al.  Linear-Space Approximate Distance Oracles for Planar, Bounded-Genus and Minor-Free Graphs , 2011, ICALP.

[22]  Mikkel Thorup,et al.  Compact oracles for reachability and approximate distances in planar digraphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[23]  Amir Abboud,et al.  Popular Conjectures as a Barrier for Dynamic Planar Graph Algorithms , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[24]  Sergio Cabello,et al.  Many Distances in Planar Graphs , 2006, SODA '06.

[25]  Shiri Chechik,et al.  Approximate Distance Oracle with Constant Query Time , 2013, ArXiv.

[26]  Philip N. Klein,et al.  Multiple-source shortest paths in planar graphs , 2005, SODA '05.

[27]  Rolf Klein,et al.  Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.

[28]  Yahav Nussbaum,et al.  Improved Distance Queries in Planar Graphs , 2010, WADS.

[29]  Satish Rao,et al.  Planar graphs, negative weight edges, shortest paths, and near linear time , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[30]  Christian Sommer,et al.  Exact distance oracles for planar graphs , 2010, SODA.

[31]  Jinhui Xu,et al.  Shortest path queries in planar graphs , 2000, STOC '00.