Isospectral flows that preserve matrix structure
暂无分享,去创建一个
[1] G. Golub,et al. A survey of matrix inverse eigenvalue problems , 1986 .
[2] F. Gantmacher,et al. Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .
[3] Moody T. Chu,et al. Isospectral Flows and Abstract Matrix Factorizations , 1988 .
[4] G. Gladwell. Total positivity and Toda flow , 2002 .
[5] M. Chu. The Generalized Toda Flow, the QR Algorithm and the Center Manifold Theory , 1984 .
[6] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[7] G. M. L. Gladwell,et al. Inverse Problems in Vibration , 1986 .
[8] Gene H. Golub,et al. A modified method for reconstructing periodic Jacobi matrices , 1984 .
[9] W. T. Tutte. Graph Theory , 1984 .
[10] Shufang Xu,et al. An Introduction to Inverse Algebraic Eigenvalue Problems , 1999 .
[11] Gene H. Golub,et al. Matrix shapes invariant under the symmetric QR algorithm , 1995, Numer. Linear Algebra Appl..