A finite difference-augmented peridynamics method for reducing wave dispersion

A method is presented for the modeling of brittle elastic fracture which combines peridynamics and a finite difference method to mitigate the wave dispersion properties of peridynamics. Essentially, a finite difference method is used in the bulk for wave propagation modeling, while peridynamics is automatically inserted in high strain areas to model crack initiation and growth. The dispersion properties of finite difference methods and discretized peridynamics are reviewed and the interface reflection properties between the two regions are investigated. Results show that the augmented method can improve the modeling of wave propagation and boundary conditions. In addition, the numerical stress intensity factor computed at a crack tip shows reduced oscillations in the augmented method, likely due to the improved dispersion properties of the bulk. Dynamic fracture simulations show a difference in crack paths between the methods.

[1]  Olaf Weckner,et al.  The effect of long-range forces on the dynamics of a bar , 2005 .

[2]  E. Emmrich,et al.  The peridynamic model in non‐local elasticity theory , 2006 .

[3]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[4]  F. P. Bowden,et al.  Controlled Fracture of Brittle Solids and Interruption of Electrical Current , 1967, Nature.

[5]  P. L. T. Brian,et al.  A finite‐difference method of high‐order accuracy for the solution of three‐dimensional transient heat conduction problems , 1961 .

[6]  Shan Zhao,et al.  DSC time-domain solution of Maxwell's equations , 2003 .

[7]  F. Bobaru,et al.  Characteristics of dynamic brittle fracture captured with peridynamics , 2011 .

[8]  S. Silling,et al.  Convergence, adaptive refinement, and scaling in 1D peridynamics , 2009 .

[9]  F. Bobaru,et al.  Studies of dynamic crack propagation and crack branching with peridynamics , 2010 .

[10]  Z. Alterman,et al.  Propagation of elastic waves in layered media by finite difference methods , 1968 .

[11]  Florin Bobaru,et al.  The peridynamic formulation for transient heat conduction , 2010 .

[12]  Youn Doh Ha,et al.  ADAPTIVE REFINEMENT AND MULTISCALEMODELING IN 2D PERIDYNAMICS , 2011 .

[13]  R. Lehoucq,et al.  Peridynamic Simulation of Electromigration , 2008 .

[14]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[15]  W. Döll,et al.  Investigations of the crack branching energy , 1975 .

[16]  G. Gazonas,et al.  A perfectly matched layer for peridynamics in two dimensions , 2012 .

[17]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[18]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[19]  Serge Prudhomme,et al.  A force-based coupling scheme for peridynamics and classical elasticity , 2013 .

[20]  Fei Han,et al.  The morphing method as a flexible tool for adaptive local/non-local simulation of static fracture , 2014 .

[21]  Gilles Lubineau,et al.  A Morphing framework to couple non-local and local anisotropic continua , 2013 .

[22]  Y. Mikata,et al.  Analytical solutions of peristatic and peridynamic problems for a 1D infinite rod , 2012 .

[23]  J. Kalthoff On the propagation direction of bifurcated cracks , 1973 .

[24]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[25]  S. Silling,et al.  Viscoplasticity using peridynamics , 2010 .

[26]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[27]  Robust finite-difference scheme for elastic waves on coarse grids , 1992 .

[28]  Ted Belytschko,et al.  An XFEM/Spectral element method for dynamic crack propagation , 2011 .

[29]  A. Taflove,et al.  Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations , 1975 .

[30]  Christian Rey,et al.  A morphing strategy to couple non-local to local continuum mechanics , 2012 .

[31]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[32]  Y. M. Chen,et al.  Numerical computation of dynamic stress intensity factors by a Lagrangian finite-difference method (the HEMP code) , 1975 .