Numerical performance of penalty method for American option pricing
暂无分享,去创建一个
Kok Lay Teo | K. Zhang | X. Q. Yang | Song Wang | K. Teo | Song Wang | X. Q. Yang | K. Zhang
[1] P. Wilmott,et al. Option pricing: Mathematical models and computation , 1994 .
[2] X. Q. Yang,et al. Decreasing Functions with Applications to Penalization , 1999, SIAM J. Optim..
[3] Noelle Foreshaw. Options… , 2010 .
[4] F. Black,et al. The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.
[5] J. Hull. Options, Futures, and Other Derivatives , 1989 .
[7] Kai Zhang,et al. Pricing options under jump diffusion processes with fitted finite volume method , 2008, Appl. Math. Comput..
[8] Peter A. Forsyth,et al. Quadratic Convergence for Valuing American Options Using a Penalty Method , 2001, SIAM J. Sci. Comput..
[9] J. Pang,et al. Option Pricing and Linear Complementarity , 1998 .
[10] S. Ross,et al. Option pricing: A simplified approach☆ , 1979 .
[11] Ernan Haruvy,et al. Competition with Open Source as a Public Good , 2008 .
[12] Kok Lay Teo,et al. Power Penalty Method for a Linear Complementarity Problem Arising from American Option Valuation , 2006 .
[13] Song Wang,et al. A novel fitted finite volume method for the Black-Scholes equation governing option pricing , 2004 .
[14] R. Rannacher. Finite element solution of diffusion problems with irregular data , 1984 .
[15] Song Wang,et al. A power penalty method for linear complementarity problems , 2008, Oper. Res. Lett..
[16] Song Wang,et al. A Fitted Finite Volume Method for the Valuation of Options on Assets with Stochastic Volatilities , 2006, Computing.