Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods

Abstract Let I :Ω→ℜ be a given bounded image function, where Ω is an open and bounded domain which belongs to ℜn. Let us consider n=2 for the purpose of illustration. Also, let S={xi}i∈Ω be a finite set of given points. We would like to find a contour Γ⊂Ω, such that Γ is an object boundary interpolating the points from S. We combine the ideas of the geodesic active contour (cf. Caselles et al. [7,8]) and of interpolation of points (cf. Zhao et al. [40]) in a level set approach developed by Osher and Sethian [33]. We present modelling of the proposed method, both theoretical results (viscosity solution) and numerical results are given.

[1]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[2]  Tony F. Chan,et al.  Variational PDE models in image processing , 2002 .

[3]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[4]  Sergei Petrovich Novikov,et al.  The geometry of surfaces, transformation groups, and fields , 1984 .

[5]  L. Vese A Study in the BV Space of a Denoising—Deblurring Variational Problem , 2001 .

[6]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[7]  ISAAC COHEN,et al.  Using deformable surfaces to segment 3-D images and infer differential structures , 1992, CVGIP Image Underst..

[8]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[9]  Christian Gout,et al.  A Segmentation Method under Geometric Constraints after Pre-processing , 2000 .

[10]  L. Vese A method to convexify functions via curve evolution , 1999 .

[11]  Laurent D. Cohen,et al.  Surface reconstruction using active contour models , 1993 .

[12]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[13]  Caroline Guyader Imagerie Mathématique: segmentation sous contraintes géométriques ~ Théorie et Applications , 2004 .

[14]  Christian Gout,et al.  An algorithm for contrast enhancement and segmentation of complex geophysical images , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[15]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[16]  Christian Gout,et al.  Using a level set approach for image segmentation under interpolation conditions , 2005, Numerical Algorithms.

[17]  J. Sethian Evolution, implementation, and application of level set and fast marching methods for advancing fronts , 2001 .

[18]  Y. Giga,et al.  Generalized interface evolution with the Neumann boundary condition , 1991 .

[19]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[20]  F. Tony,et al.  A multiphase level set framework for image segmentation using theMumford and Shah modelLuminita , 2001 .

[21]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[22]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[23]  O. Ladyzhenskaya,et al.  Equations of Parabolic Type , 1985 .

[24]  P. Olver,et al.  Conformal curvature flows: From phase transitions to active vision , 1996, ICCV 1995.

[25]  A. Chorin Flame advection and propagation algorithms , 1980 .

[26]  L. Cohen On Active Contour Models , 1992 .

[27]  Stanley Osher,et al.  Implicit and Nonparametric Shape Reconstruction from Unorganized Data Using a Variational Level Set Method , 2000, Comput. Vis. Image Underst..

[28]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[29]  R Malladi,et al.  Image processing via level set curvature flow. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[30]  L. Vese,et al.  An efficient variational multiphase motion for the Mumford-Shah segmentation model , 2000, Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154).

[31]  Anthony J. Yezzi,et al.  Gradient flows and geometric active contour models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[32]  Laurent D. Cohen,et al.  Deformable models for 3-D medical images using finite elements and balloons , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[34]  J. Sethian Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws , 1990 .

[35]  G. Barles Nonlinear Neumann Boundary Conditions for Quasilinear Degenerate Elliptic Equations and Applications , 1999 .

[36]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[37]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[38]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[39]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[40]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[41]  Hitoshi Ishii,et al.  Nonlinear oblique derivative problems for singular degenerate parabolic equations on a general domain , 2004 .

[42]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[43]  Tony F. Chan,et al.  Active Contours without Edges for Vector-Valued Images , 2000, J. Vis. Commun. Image Represent..

[44]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[45]  Baba C. Vemuri,et al.  A fast level set based algorithm for topology-independent shape modeling , 1996, Journal of Mathematical Imaging and Vision.