MIR: An Approach to Robust Clustering-Application to Range Image Segmentation

This paper describes an unsupervised region merging technique based on a novel robust statistical test. The merging decision is derived from the mutual inlier ratio (MIR) of adjacent regions. This ratio is computed using robust regression techniques and a novel method to estimate the robust scale of the Gaussian distribution. A discrimination value to recognize identical Gaussian distributions with the MIR is derived theoretically as a function of the sizes of the compared sets. The presented method to test distributions is compared with the established Kolmogorov-Smirnov test and implemented into a segmentation algorithm for planar range images. The iterative region growing technique is evaluated using an established framework for range image segmentation comparison involving 60 real range images. The evaluation incorporates a comparison with four state-of-the-art algorithms and gives an experimental demonstration of the need for robust methods capable of handling noisy data in real applications.

[1]  R. Gregory The intelligent eye , 1970 .

[2]  Steven W. Zucker,et al.  Region growing: Childhood and adolescence* , 1976 .

[3]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[4]  Lawrence L. Lapin Probability and Statistics for Modern Engineering , 1983 .

[5]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Roland Wilson,et al.  The Uncertainty Principle in Image Processing , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[8]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[9]  Ramesh C. Jain,et al.  Segmentation through Variable-Order Surface Fitting , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Robert J. Schalkoff,et al.  Digital Image Processing and Computer Vision , 1989 .

[11]  Robert J. Schalkoff,et al.  Digital image processing and computer vision: an introduction to theory and implementations , 1989 .

[12]  Dana S. Richards,et al.  VLSI median filters , 1990, IEEE Trans. Acoust. Speech Signal Process..

[13]  Jean-Michel Jolion,et al.  Robust Clustering with Applications in Computer Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[15]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[16]  Bruce G. Batchelor,et al.  Edge-Region-Based Segmentation of Range Images , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Xiaobo Li,et al.  Adaptive image region-growing , 1994, IEEE Trans. Image Process..

[19]  Robert B. Fisher,et al.  Experiments in Curvature-Based Segmentation of Range Data , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Charles V. Stewart,et al.  MINPRAN: A New Robust Estimator for Computer Vision , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Andrew W. Fitzgibbon,et al.  An Experimental Comparison of Range Image Segmentation Algorithms , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Frederic Dufaux,et al.  Regions merging based on robust statistical testing , 1996, Other Conferences.

[24]  Michal Haindl,et al.  Fast Segmentation of Range Images , 1997, ICIAP.

[25]  James V. Miller,et al.  Prediction intervals for surface growing range segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Charles V. Stewart,et al.  Bias in robust estimation caused by discontinuities and multiple structures , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Paul Checchin,et al.  Segmentation of range images into planar regions , 1997, Proceedings. International Conference on Recent Advances in 3-D Digital Imaging and Modeling (Cat. No.97TB100134).

[28]  Michael Spann,et al.  A system for seismic data processing , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[29]  Rae-Hong Park,et al.  Robust Adaptive Segmentation of Range Images , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  William H. Press,et al.  Numerical recipes in C , 2002 .